1.最前面
作为一个搞机器的人,因为毕设的需要,接触了图像处理和机器视觉的知识。渐渐地发现,只会一些最基本的图像处理的知识,是没有资格谈论这门学科的。在研一的时候,被推荐这本书,由于当时接触的模式识别和机器学习的知识并不多,凭着自己的兴趣在学习。当时这本书还是一本英文书,很多词汇即使翻译成中文也不知所云,于是读读停停,读到第七章稀疏向量机,再也读不下去了。前面几章的东西也忘记的厉害,最后只得作罢。
在工作之后,由于对现在工作的方向不太满意,总寻思着能够换回原来的方向,于是捡起了这本书,啃过完全不知所云的图模型,来到第九章EM算法,第十章近似推断,发现这两章开始试图将前面的知识做高屋建瓴的融合时,我明白了,这的确是一本好书。尽管下一张采样方法初读时仍是云里雾里,但是捱过之后就是我比较熟悉的PCA和ICA。下一章HMM是N多最新领域研究热点,似乎高峰上的白雪皑皑的顶尖折射最亮丽的阳光就在我的眼前。我终于在工作不到半年之后(2016.01.06)强行刷到最后一章。
有意思的是,在工作之后,我利用晚上回来的时间,周末的时间把这本书读完了,这在我研究生两年期间都没有做到的事情我居然做完了。想到室友当时说,你真宅,周末也不出去玩玩。现在我终于可以笑一笑了。
诚然,也许我再也不可能换回原来的方向,想想也许是有点伤感,但回过头来想,这本书,你真的读透了吗?我心里十分清楚,图模型和采样方法那两章读到最后什么操行我是非常没有底气的。而且整本书回过头来想想,似乎也没有什么头绪。
于是年前年后接把之前看的云里雾里的图模型、采样方法以及觉得很牛但是说不出所以然的变分近似三章刷了一遍。紧接着在最近十多天又把书从第二章刷到第十三章HMM,准备找工作了。我知道前面仍是一片沼泽,也许我没有出路。
我找到一份模式识别的工作了,总体来说,还算不错。
2.PRML框架(一)——MLE到MAP坎坷之路
机器学习和模式识别的几乎所有解决的问题,就两件事:建模与优化。
而这本被称作殿堂级的宝书从来到尾都是在做贝叶斯脑残粉的事情。整本书基本上就一个模型,频率学派眼中的极大似然估计(MLE)和贝叶斯学派钟爱的极大后验分布(MAP)。尽管第七章支持向量机(SVM)并不是属于这一类,但相关向量机(RVM)仍是贝叶斯方法的体现。除了最后一章组合模型和第八章图模型属于比较通用的部分外,整本书的模型就是MLE之后MAP。即使是神经网络(NN)也被纳入到了贝叶斯方法之内。
下面根据这个框架,理清这本书的结构安排:
第一章,机器学习的基本概念。这一章的知识其实属于比较重要