2021科大讯飞-车辆贷款违约预测挑战赛--方案
简介
车贷违约预测问题,目的是建立风险识别模型来预测可能违约的借款人。预测结果为借款人是否可能违约,属于二分类问题。
偏数据挖掘
的比赛,关键点是如何基于对数据的理解抽象归纳出有用的特征
。
站在大佬的视角,尝试学习总结,站在巨人的肩膀上,也许看得会更远一些。
直接进入主题,开始学习套路,芜湖~
特征工程
1、常用库、数据导入
import pandas as pd
import numpy as np
import lightgbm as lgb
import xgboost as xgb
from sklearn.metrics import roc_auc_score, auc, roc_curve, accuracy_score, f1_score
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler, QuantileTransformer, KBinsDiscretizer, LabelEncoder, MinMaxScaler, PowerTransformer
from tqdm import tqdm
import pickle
import logging
logging.basicConfig(format=’%(asctime)s : %(levelname)s : %(message)s’, level=logging.INFO)
import os
后半部分用了一些工具:
- tqdm:一个优雅的进度条显示,方便观测跑数进度以及速度;
- pickle:将对象以文件的形式存放在磁盘上,几乎所有的数据类型都可以用pickle来序列化,一般先dump,后load,类似于写出、导入的意思;作用是,一次结果多次复用,避免重复做功,hhh,比如说A列数据处理得花2h,每次修改过后需重跑其他列数据,但无须修改A列数据,就可以用pickle解决这个问题,快速调取之前的结果;
- logging:控制台输出日志,方便查看运行状态;
logging.info(‘data loading…’)
train = pd.read_csv(’…/xfdata/车辆贷款违约预测数据集/train.csv’)
test = pd.read_csv(’…/xfdata/车辆贷款违约预测数据集/test.csv’)
2、特征工程
2.1 构造特征
针对训练集、测试集:
- 根据业务理解,计算新的特征;
- 对某些比例特征进行
等宽分箱
(cut),对某些数值特征进行等频分箱
(qcut),还有一些数值特征进行自定义分箱,划分bin的范围;
def gen_new_feats(train, test):
‘’‘生成新特征:如年利率/分箱等特征’’’
# Step 1: 合并训练集和测试集
data = pd.concat([train, test])# Step 2: 具体特征工程 # 计算二级账户的年利率 data['sub_Rate'] = (data['sub_account_monthly_payment'] * data['sub_account_tenure'] - data[ 'sub_account_sanction_loan']) / data['sub_account_sanction_loan'] # 计算主账户的年利率 data['main_Rate'] = (data['main_account_monthly_payment'] * data['main_account_tenure'] - data[ 'main_account_sanction_loan']) / data['main_account_sanction_loan'] # 对部分特征进行分箱操作 # 等宽分箱 loan_to_asset_ratio_labels = [i for i in range(10)] data['loan_to_asset_ratio_bin'] = pd.cut(data["loan_to_asset_ratio"], 10, labels=loan_to_asset_ratio_labels) # 等频分箱 data['asset_cost_bin'] = pd.qcut(data['asset_cost'], 10, labels=loan_to_asset_ratio_labels) # 自定义分箱 amount_cols = [ 'total_monthly_payment', 'main_account_sanction_loan', 'main_account_disbursed_loan', 'sub_account_sanction_loan', 'sub_account_disbursed_loan', 'main_account_monthly_payment', 'sub_account_monthly_payment', 'total_sanction_loan' ] amount_labels = [i for i in range(10)] for col in amount_cols: total_monthly_payment_bin = [-1, 5000, 10000, 30000, 50000, 100000, 300000, 500000, 1000000, 3000000, data[col].max()] data[col + '_bin'] = pd.cut(data[col], total_monthly_payment_bin, labels=amount_labels).astype(int) # Step 3: 返回包含新特征的训练集 & 测试集 return data[data['loan_default'].notnull()], data[data['loan_default'].isnull()]</code></pre><h4>2.2 编码-Target Encoding</h4><p>Target encoding是一种结合目标值进行特征编码的方式。</p><p>在二分类中,对于特征i,target encoding在该特征取值为k时的编码值为类别k对应的目标值期望E(y|xi=xik)。</p><p><span class="img-wrap"><img class="lazy" referrerpolicy="no-referrer" data-src="/img/remote/1460000041098206" alt="20211208003221" title="20211208003221"></span></p><p>在样本集中一共有10条记录,其中3条记录中特征Trend的取值为Up,我们关注这3条记录。在k=Up时,目标值的期望为2/3 ≈ 0.66,所以将Up编码为0.66。</p><p>大佬后面主要是针对id特征进行target encoding。</p><pre><code class="python"&g