图像处理的例子之图像修复概念解析

本文探讨了图像修复的概念,特别是在计算机视觉中的应用。内容涵盖图像修复的挑战,如区域复杂性、图像复杂性和模式复杂性,并将其定性为低层次修复问题。修复模型强调局部性、泛函性、自动化、普遍性和稳定性,适用于处理各种图像修复任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

精简摘录于第6章节 – 书籍 – 图像处理与分析

该书一些概念性的讲解还是很到位的,其中相关算法多为传统机器学习相关


CV 、图像修复、技术交流群



图像处理的例子


  • 图像对比度增强
  • 图像降噪
  • 图像去模糊
  • 图像修复
  • 图像分割

图像修复主要包含如下修复(图像还原)类型


1-1


二维图像修复或者插值的主要挑战在于以下三个方面:

区域复杂性: CV中去遮挡,修复区域由前景中的物体所决定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值