回归预测分析(RANSAC、多项式回归、残差图、随机森林)

本文基于波士顿房价数据,探讨回归预测分析,包括RANSAC算法处理异常值,多项式回归解决非线性问题,以及通过残差图评估模型性能。此外,还介绍了随机森林回归的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本篇文章中,主要是介绍利用波士顿房价数据来掌握回归预测分析的一些方法。通过本篇文章你可以学习到:

1、可视化数据集的重要特征
2、估计回归模型的系数
3、使用RANSAC拟合高鲁棒性回归模型
4、如何来评价回归模型
5、多项式回归
6、决策树回归
7、随机森林回归

数据集下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

数据特征说明:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names


掌握数据的基本情况
import pandas as 
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值