[Classifier-Free] Classifier-Free Diffusion Guidance

1、背景

        1)Classifier Guidance的问题

                a)需要额外训练一个分类器(要基于噪声图像训练,因此无法用现成的预训练分类器),使得扩散模型的训练pipeline更加复杂

                b)whether classifier guidance is successful at boosting classifier-based metrics such as FID and Inception score (IS) simply because it is adversarial against such classifiers (classifier guidance mixes a score estimate with a classifier gradient during sampling, classifier-guided diffusion sampling can be interpreted as attempting to confuse an image classifier with a gradient-based adversarial attack)

                c)whether classifier-guided diffusion models perform well on classifier-based metrics because they are beginning to resamble GANs, which are already known to perform well on such metrics (stepping in direction of classifier gradients also bears some resamblance to GAN traning, particularly with nonparameteric generators)

        2)此外,像GAN和基于flow的模型,可以通过在采样时降低方差或者噪声输入的范围来实现truncation或者低温采样,从而平衡生成结果的variaty和fidelity。而在diffusion的reverse过程中对模型score进行缩放或者降低高斯噪声的方差则会生成模糊和低质量的图像

2、方法

        1)通过随机(概率为p_{uncond})将c置为\varnothing可以实现用同一个网络同时对条件和非条件生成的训练

        2)通过对条件生成结果和非条件生成结果进行加权,即可得到最终的生成结果

                ​​​​​​​        ​​​​​​​        

3、结果

        除了训练时采用continuous time以外,模型结构和超参数与Classifier-Guided Diffusion一致

        1)\omega取0.1或0.3时,FID最佳(fidelity);\omega >=4时,IS最佳(variaty)

        2)p_{uncond}取0.1或0.2时,整体的IS/FID最佳。说明模型只有少部分能力用于无条件生成任务的训练即可

        3)T↑,采样质量↑。取T=256可以很好的平衡采样质量和采样速度。需要注意的是,每个采样步骤要对降噪模型infer两次,分别得到条件\epsilon_{\theta}(z_{\lambda}, c)和无条件\epsilon_{\theta}(z_{\lambda})​​​​​​​

classifier-free diffusion guidance(无分类器扩散引导)是一种新兴的技术,用于在无需提前训练分类器的情况下进行目标导航。 传统的目标导航技术通常需要使用先验知识和已经训练好的分类器来辨别和识别目标。然而,这些方法存在许多限制和缺点,如对精确的先验知识的需求以及对大量标记数据的依赖。 相比之下,classifier-free diffusion guidance 可以在目标未知的情况下进行导航,避免了先验知识和训练好的分类器的依赖。它的主要思想是利用传感器和环境反馈信息,通过推测和逐步调整来实现导航。 在这种方法中,机器人通过感知环境中的信息,例如物体的形状、颜色、纹理等特征,获取关于目标位置的信息。然后,它将这些信息与先验的环境模型进行比较,并尝试找到与目标最相似的区域。 为了进一步提高导航的准确性,机器人还可以利用扩散算法来调整自己的位置和方向。通过比较当前位置的特征与目标位置的特征,机器人可以根据这些差异进行调整,逐渐接近目标。 需要注意的是,classifier-free diffusion guidance还处于研究阶段,目前还存在许多挑战和问题。例如,对于复杂的环境和多个目标,算法的性能可能会下降。然而,随着技术的发展,我们可以预见classifier-free diffusion guidance将会在未来的目标导航中发挥重要的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值