深度学习(生成式模型)——Classifier Free Guidance Diffusion

前言

在上一节中,我们总结了Classifier Guidance Diffusion,其有两个弊端,一是需要额外训练一个分类头,引入了额外的训练开销。二是要噪声图像通常难以分类,分类头通常难以学习,影响生成图像的质量。

Classifier Free Guidance Diffusion解决了上述两个弊端,不需要引入额外的分类头即可控制图像的生成。

本节所有符号含义与前文一致,请读者阅读完前三篇博文后在查阅此文。

本文仅总结backbone为DDIM情况下的Classifier Free Guidance Diffusion

推导流程

依据前文可知Classifier Guidance Diffusion的前向过程与反向过程与DDPM一致,且有
q ( x t ∣ x t − 1 , y ) = q ( x t ∣ x t − 1 ) q(x_t|x_{t-1},y)=q(x_t|x_{t-1}) q(xtxt1,y)=q(xtxt1)

则有 q ( x t ∣ x 0 , y ) = q ( x t ∣ x 0 ) = N ( x t ; α ˉ t x 0 , ( 1 − α ˉ t ) I ) q(x_t|x_{0},y)=q(x_t|x_0)=\mathcal N(x_t;\sqrt{\bar \alpha_t}x_0,(1-\bar\alpha_t)\mathcal I) q(xtx0,y)=q(xtx0)=N(xt;αˉt x0,(1αˉt)I)

假设目前有一批基于条件 y y y的样本 x t x_t xt ϵ ( x t , t , y ) \epsilon(x_t,t,y) ϵ(xt,t,y)服从标准正态分布,则样本 x t x_t xt将满足
x t = α ˉ t x 0 + 1 − α ˉ t ϵ ( x t , t , y ) (1.0) x_t=\sqrt{\bar \alpha_t}x_0+\sqrt{1-\bar\alpha_t}\epsilon(x_t,t,y)\tag{1.0} xt=αˉt x0+1αˉt ϵ(xt,t,y)(1.0)

依据Tweedie方法,我们有

α ˉ t x 0 = x t + ( 1 − α ˉ t ) ∇ x t log ⁡ p ( x t ∣ y ) \begin{aligned} \sqrt{\bar \alpha_t}x_0=x_t+(1-\bar\alpha_t)\nabla_{x_t}\log p(x_t|y) \end{aligned} αˉt x0=xt+(1αˉt)xtlogp(xty)
进而有
x t = α ˉ t x 0 − ( 1 − α ˉ t ) ∇ x t log ⁡ p ( x t ∣ y ) (1.1) x_t=\sqrt{\bar \alpha_t}x_0-(1-\bar\alpha_t)\nabla_{x_t}\log p(x_t|y)\tag{1.1} xt=αˉt x0(1αˉt)xtlogp(xty)(1.1)

结合式1.0与1.1,则有

∇ x t log ⁡ p ( x t ∣ y ) = − 1 1 − α ˉ t ϵ ( x t , t , y ) (1.2) \nabla_{x_t}\log p(x_t|y)=-\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t,y)\tag{1.2} xtlogp(xty)=1αˉt 1ϵ(xt,t,y)(1.2)

依据贝叶斯公式,我们有
log ⁡ p ( x t ∣ y ) = log ⁡ p ( y ∣ x t ) + log ⁡ p ( x t ) − log ⁡ p ( y ) ∇ x t log ⁡ p ( y ∣ x t ) = ∇ x t log ⁡ p ( x t ∣ y ) − ∇ x t log ⁡ p ( x t ) + ∇ x t log ⁡ p ( y ) = ∇ x t log ⁡ p ( x t ∣ y ) − ∇ x t log ⁡ p ( x t ) = − 1 1 − α ˉ t ϵ ( x t , t , y ) + 1 1 − α ˉ t ϵ ( x t , t ) (1.3) \begin{aligned} \log p(x_t|y)&=\log p(y|x_t)+\log p(x_t)-\log p(y)\\ \nabla_{x_t}\log p(y|x_t)&=\nabla_{x_t}\log p(x_t|y)-\nabla_{x_t}\log p(x_t)+\nabla_{x_t}\log p(y)\\ &=\nabla_{x_t}\log p(x_t|y)-\nabla_{x_t}\log p(x_t)\\ &=-\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t,y)+\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t) \end{aligned}\tag{1.3} logp(xty)xtlogp(yxt)=logp(yxt)+logp(xt)logp(y)=xtlogp(xty)xtlogp(xt)+xtlogp(y)=xtlogp(xty)xtlogp(xt)=1αˉt 1ϵ(xt,t,y)+1αˉt 1ϵ(xt,t)(1.3)

回顾一下backbone为DDIM的Classifier Guidance Diffusion的采样流程
在这里插入图片描述

将式1.3代入,且引入一个超参数 w w w,可得
ϵ ^ = ϵ θ ( x t ) − w 1 − α ˉ t ∇ x t log ⁡ p ( y ∣ x t ) = ϵ θ ( x t ) − w ( ϵ θ ( x t , t ) − ϵ θ ( x t , t , y ) ) = ( 1 − w ) ϵ θ ( x t , t ) + w ϵ θ ( x t , t , y ) (1.4) \begin{aligned} \hat \epsilon &= \epsilon_\theta(x_t)-w\sqrt{1-\bar\alpha_t}\nabla_{x_t}\log p(y|x_t)\\ &=\epsilon_\theta(x_t)-w(\epsilon_\theta(x_t,t)-\epsilon_\theta(x_t,t,y))\\ &=(1-w)\epsilon_\theta(x_t,t)+w\epsilon_\theta(x_t,t,y) \end{aligned}\tag{1.4} ϵ^=ϵθ(xt)w1αˉt xtlogp(yxt)=ϵθ(xt)w(ϵθ(xt,t)ϵθ(xt,t,y))=(1w)ϵθ(xt,t)+wϵθ(xt,t,y)(1.4)

注意到原论文的推导结果为(为了区分,超参数设为 w ^ \hat w w^

ϵ ^ = ( 1 + w ^ ) ϵ θ ( x t , t , y ) − w ^ ϵ θ ( x t , t ) (1.5) \hat \epsilon = (1+\hat w)\epsilon_\theta(x_t,t,y)-\hat w\epsilon_\theta(x_t,t)\tag{1.5} ϵ^=(1+w^)ϵθ(xt,t,y)w^ϵθ(xt,t)(1.5)

式1.5和1.4是一致的,均为 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y) ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t)的加权和,且权重和为1。

训练流程

依据式1.5,我们需要训练两个神经网络 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y) ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t),前者为的输入包含加噪图片 x t x_t xt以及条件 y y y(图像or文字),后者的输入仅包含加噪图像 x t x_t xt。但其实两个神经网络可以共用一个backbone,在训练时,只需要用一定的概率将条件 y y y设置为空即可。

测试流程

Classifier Free Guidance Diffusion的测试流程有两次推断

  • 将条件 y y y空置,得到 ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t)
  • 输入条件 y y y,得到 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y)
  • 利用公式1.5,生成基于条件 y y y的图像

可以看到推断成本多了一倍。

  • 13
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
classifier-free diffusion guidance(无分类器扩散引导)是一种新兴的技术,用于在无需提前训练分类器的情况下进行目标导航。 传统的目标导航技术通常需要使用先验知识和已经训练好的分类器来辨别和识别目标。然而,这些方法存在许多限制和缺点,如对精确的先验知识的需求以及对大量标记数据的依赖。 相比之下,classifier-free diffusion guidance 可以在目标未知的情况下进行导航,避免了先验知识和训练好的分类器的依赖。它的主要思想是利用传感器和环境反馈信息,通过推测和逐步调整来实现导航。 在这种方法中,机器人通过感知环境中的信息,例如物体的形状、颜色、纹理等特征,获取关于目标位置的信息。然后,它将这些信息与先验的环境模型进行比较,并尝试找到与目标最相似的区域。 为了进一步提高导航的准确性,机器人还可以利用扩散算法来调整自己的位置和方向。通过比较当前位置的特征与目标位置的特征,机器人可以根据这些差异进行调整,逐渐接近目标。 需要注意的是,classifier-free diffusion guidance还处于研究阶段,目前还存在许多挑战和问题。例如,对于复杂的环境和多个目标,算法的性能可能会下降。然而,随着技术的发展,我们可以预见classifier-free diffusion guidance将会在未来的目标导航中发挥重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值