金融数据_数据预处理

该博客详细介绍了金融数据预处理的步骤,包括理解数据集规模、检查缺失值和唯一值,以及深入分析数据类型。对于类别型和数值型数据,作者探讨了其在分析中的处理方式,如数值型数据的分箱操作。此外,还强调了数据可视化在数据分析中的重要性,以助于更好地理解数据特征和潜在模式。
摘要由CSDN通过智能技术生成

数据总体了解:

读取数据集并了解数据集大小,原始特征维度;

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')
data_train = pd.read_csv('train.csv', sep=',')
data_train

在这里插入图片描述

通过info熟悉数据类型;

data_train.info()

这里是引用

粗略查看数据集中各特征基本统计量;

data_train.describe()

在这里插入图片描述

缺失值和唯一值:

查看数据缺失值情况
以比例的形式查看空缺值占比,由于属性较多,仅显示有缺失值的项。

miss = data_train.isnull().sum()/len(data_train)
miss[miss>0].sort_values(ascending = False)

这里是引用

查看唯一值特征情况

# 查看训练集测试集中特征属性只有一值的特征
one_value_fea = [col for col in data_train.columns if data_train[col].nunique() <= 1]
one_value_fea_test = [col for col in data_test_a.columns if data_test_a[col].nunique() <= 1]
one_value_fea
one_value_fea_test
out:['policyCode']
out:[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术界渣渣,渣渣界大佬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值