图像处理之高斯混合模型

文章介绍了如何利用高斯混合模型(GMM)处理图像,特别是针对有明显特征的目标进行分类。通过提取图像的区域特征,创建并训练GMM,然后使用该模型对图像进行颜色分类,以此作为替代深度学习的一种方法,尤其在数据量有限的情况下。
摘要由CSDN通过智能技术生成

一、高斯混合模型

现有的图像中目标的分类常用深度学习模型处理,但是深度学习需要大量模型处理。对于明显提取的目标,常常有几个明显特征,利用这几个明显特征使用少量图片便可以完成图像目标分类工作。这里介绍使用高斯混合模型GMM处理图像。

二、步骤

1. 先提取特征,提取区域特征(或者边缘,灰度特征等)

draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)  
*用刚才选中的区域创建一个与坐标轴平行的矩形  
gen_rectangle1 (ROI_0, Row1, Column1, Row2, Column2)  

2. 定义特征类

FuseColors := ['红色','绿色','青色','蓝色']  

3.创建分类高斯模型

creat_class_gmm(2,2,1,'spherical','normalization',10,42,GMMHandle)

4.训练高斯混合模型

train_class_gmm(GMMHandle,100,0.001,'training',0.0001,centers,Iter)

5.使用高斯混合模型分类

classify_class_gmm(GMMHandle,FeatureVector,1,classID,classProb,Density,KSigmaProb)

三、代码

下面两张简单的图,第一张用来训练,训练好后进行识别第二张的颜色;

*此过程将dev_update_pc、dev_update_var和dev_update_window设置为“关闭”  
dev_update_off ()  
*关闭窗口  
dev_close_window ()  
*定义一个数组存放字符串  
FuseColors := ['红色','绿色','青色','蓝色']  
*创建一个空元组Classes  
gen_empty_obj (Classes)  
*读一张图像  
read_image (Image, 'C:/Users/Administrator/Desktop/101.png')  
*获得图像的宽和高  
get_image_size (Image, Width, Height)  
*打开一个和刚才获得的图像大小相同的窗口  
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)  
*窗口显示刚才读取的图像Image  
dev_display (Image)  
*定义区域的填充模式为边缘模式  
dev_set_draw('margin')  
*设置颜色为黑色  
dev_set_color ('black')  
*设置字体样式  
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')  
*在图片上显示消息  
disp_message (WindowHandle, '使用鼠标左键框选红色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')  
*画一个平行于坐标轴的矩形,包含图片中红色部分  
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)  
*用刚才选中的区域创建一个与坐标轴平行的矩形  
gen_rectangle1 (ROI_0, Row1, Column1, Row2, Column2)  
*连接两个标志性对象元组  
concat_obj (Classes, ROI_0, Classes)  
*显示Image图像  
dev_display (Image)  
*显示区域Classes  
dev_display (Classes)  
disp_message (WindowHandle, '使用鼠标左键框选绿色 ,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')  
*画一个平行于坐标轴的矩形,包含图片中绿色部分  
draw_rectangle1 (WindowHandle, Row11, Column11, Row21, Column21)  
gen_rectangle1 (ROI_1, Row11, Column11, Row21, Column21)  
concat_obj (Classes, ROI_1, Classes)  
dev_display (Image)  
dev_display (Classes)  
disp_message (WindowHandle, '使用鼠标左键框选青色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')  
*画一个平行于坐标轴的矩形,包含图片中青色部分  
draw_rectangle1 (WindowHandle, Row12, Column12, Row22, Column22)  
gen_rectangle1 (ROI_2, Row12, Column12, Row22, Column22)  
concat_obj (Classes, ROI_2, Classes)  
dev_display (Image)  
dev_display (Classes)  
disp_message (WindowHandle, '使用鼠标左键框选蓝色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')  
*画一个平行于坐标轴的矩形,包含图片中蓝色部分  
draw_rectangle1 (WindowHandle, Row13, Column13, Row23, Column23)  
gen_rectangle1 (ROI_3, Row13, Column13, Row23, Column23)  
concat_obj (Classes, ROI_3, Classes)  
dev_display (Classes)  
*创建高斯混合模型进行分类  
create_class_gmm (3, 4, 1, 'spherical', 'normalization', 10, 42, GMMHandle)  
*将图像中的训练样本添加到高斯混合模型的训练数据中,其中Classes是被训练的区域  
add_samples_image_class_gmm (Image, Classes, GMMHandle, 0)  
*训练高斯混合模型  
train_class_gmm (GMMHandle, 100, 0.001, 'training', 0.0001, Centers, Iter)  
*使用高斯混合模型创建查找表以对字节图像进行分类  
create_class_lut_gmm (GMMHandle, [], [], ClassLUTHandle)  
*清除高斯混合模型  
clear_class_gmm (GMMHandle)  
*读一张图片放到Image1,然后识别其中的颜色  
read_image (Image1, 'C:/Users/Administrator/Desktop/102.png')  
*显示Image1  
dev_display (Image1)  
*使用查找表对字节图像进行分类  
classify_image_class_lut (Image1, ClassRegions, ClassLUTHandle)  
*For循环依次识别'红色','绿色','青色','蓝色'  
for Fuse := 1 to 4 by 1  
    *复制HALCON数据库中的图标对象  
    copy_obj (ClassRegions, ObjectsSelected, Fuse, 1)  
    *用圆形结构元素关闭区域  
    closing_circle (ObjectsSelected, RegionClosing, 3.5)  
    *计算区域的连通分量  
    connection (RegionClosing, ConnectedRegions)  
    *借助形状特征选择区域  
    select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 150, 99999)  
    *填补区域中的漏洞  
    fill_up (SelectedRegions, RegionFillUp)  
    *计算区域和区域中心  
    area_center (RegionFillUp, Area, Row, Column)  
    *变换区域的形状  
    shape_trans (RegionFillUp, RegionTrans, 'convex')  
    *元组中的对象数  
    count_obj (RegionTrans, Number)  
    *For循环将找到的颜色标注出来  
        for j := 1 to Number by 1  
            disp_message (WindowHandle, FuseColors[Fuse - 1], 'image', Row[j - 1] - 10, Column[j - 1] - 10, 'black', 'true')  
        endfor  
endfor

 识别

 参考:

 (机器视觉)Halcon下颜色识别与联合C#撸代码!1 | 码农家园

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值