一、高斯混合模型
现有的图像中目标的分类常用深度学习模型处理,但是深度学习需要大量模型处理。对于明显提取的目标,常常有几个明显特征,利用这几个明显特征使用少量图片便可以完成图像目标分类工作。这里介绍使用高斯混合模型GMM处理图像。
二、步骤
1. 先提取特征,提取区域特征(或者边缘,灰度特征等)
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)
*用刚才选中的区域创建一个与坐标轴平行的矩形
gen_rectangle1 (ROI_0, Row1, Column1, Row2, Column2)
2. 定义特征类
FuseColors := ['红色','绿色','青色','蓝色']
3.创建分类高斯模型
creat_class_gmm(2,2,1,'spherical','normalization',10,42,GMMHandle)
4.训练高斯混合模型
train_class_gmm(GMMHandle,100,0.001,'training',0.0001,centers,Iter)
5.使用高斯混合模型分类
classify_class_gmm(GMMHandle,FeatureVector,1,classID,classProb,Density,KSigmaProb)
三、代码
下面两张简单的图,第一张用来训练,训练好后进行识别第二张的颜色;
*此过程将dev_update_pc、dev_update_var和dev_update_window设置为“关闭”
dev_update_off ()
*关闭窗口
dev_close_window ()
*定义一个数组存放字符串
FuseColors := ['红色','绿色','青色','蓝色']
*创建一个空元组Classes
gen_empty_obj (Classes)
*读一张图像
read_image (Image, 'C:/Users/Administrator/Desktop/101.png')
*获得图像的宽和高
get_image_size (Image, Width, Height)
*打开一个和刚才获得的图像大小相同的窗口
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
*窗口显示刚才读取的图像Image
dev_display (Image)
*定义区域的填充模式为边缘模式
dev_set_draw('margin')
*设置颜色为黑色
dev_set_color ('black')
*设置字体样式
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
*在图片上显示消息
disp_message (WindowHandle, '使用鼠标左键框选红色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')
*画一个平行于坐标轴的矩形,包含图片中红色部分
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)
*用刚才选中的区域创建一个与坐标轴平行的矩形
gen_rectangle1 (ROI_0, Row1, Column1, Row2, Column2)
*连接两个标志性对象元组
concat_obj (Classes, ROI_0, Classes)
*显示Image图像
dev_display (Image)
*显示区域Classes
dev_display (Classes)
disp_message (WindowHandle, '使用鼠标左键框选绿色 ,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')
*画一个平行于坐标轴的矩形,包含图片中绿色部分
draw_rectangle1 (WindowHandle, Row11, Column11, Row21, Column21)
gen_rectangle1 (ROI_1, Row11, Column11, Row21, Column21)
concat_obj (Classes, ROI_1, Classes)
dev_display (Image)
dev_display (Classes)
disp_message (WindowHandle, '使用鼠标左键框选青色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')
*画一个平行于坐标轴的矩形,包含图片中青色部分
draw_rectangle1 (WindowHandle, Row12, Column12, Row22, Column22)
gen_rectangle1 (ROI_2, Row12, Column12, Row22, Column22)
concat_obj (Classes, ROI_2, Classes)
dev_display (Image)
dev_display (Classes)
disp_message (WindowHandle, '使用鼠标左键框选蓝色,并按鼠标右键确定选择', 'window', 12, 12, 'black', 'false')
*画一个平行于坐标轴的矩形,包含图片中蓝色部分
draw_rectangle1 (WindowHandle, Row13, Column13, Row23, Column23)
gen_rectangle1 (ROI_3, Row13, Column13, Row23, Column23)
concat_obj (Classes, ROI_3, Classes)
dev_display (Classes)
*创建高斯混合模型进行分类
create_class_gmm (3, 4, 1, 'spherical', 'normalization', 10, 42, GMMHandle)
*将图像中的训练样本添加到高斯混合模型的训练数据中,其中Classes是被训练的区域
add_samples_image_class_gmm (Image, Classes, GMMHandle, 0)
*训练高斯混合模型
train_class_gmm (GMMHandle, 100, 0.001, 'training', 0.0001, Centers, Iter)
*使用高斯混合模型创建查找表以对字节图像进行分类
create_class_lut_gmm (GMMHandle, [], [], ClassLUTHandle)
*清除高斯混合模型
clear_class_gmm (GMMHandle)
*读一张图片放到Image1,然后识别其中的颜色
read_image (Image1, 'C:/Users/Administrator/Desktop/102.png')
*显示Image1
dev_display (Image1)
*使用查找表对字节图像进行分类
classify_image_class_lut (Image1, ClassRegions, ClassLUTHandle)
*For循环依次识别'红色','绿色','青色','蓝色'
for Fuse := 1 to 4 by 1
*复制HALCON数据库中的图标对象
copy_obj (ClassRegions, ObjectsSelected, Fuse, 1)
*用圆形结构元素关闭区域
closing_circle (ObjectsSelected, RegionClosing, 3.5)
*计算区域的连通分量
connection (RegionClosing, ConnectedRegions)
*借助形状特征选择区域
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 150, 99999)
*填补区域中的漏洞
fill_up (SelectedRegions, RegionFillUp)
*计算区域和区域中心
area_center (RegionFillUp, Area, Row, Column)
*变换区域的形状
shape_trans (RegionFillUp, RegionTrans, 'convex')
*元组中的对象数
count_obj (RegionTrans, Number)
*For循环将找到的颜色标注出来
for j := 1 to Number by 1
disp_message (WindowHandle, FuseColors[Fuse - 1], 'image', Row[j - 1] - 10, Column[j - 1] - 10, 'black', 'true')
endfor
endfor
识别
参考:
(机器视觉)Halcon下颜色识别与联合C#撸代码!1 | 码农家园