【AI绘图】四、stable difusion提示词如何写?

上一篇:【AI绘图】三、stable diffussion操作界面介绍以及如何使用

如何写好提示词?

写出一份比较好的提示词是文生图技术的关键。但是,写出一份好的prompt并不容易,下面针对“如何写好提示词”这个问题,从提示词构成、调整规则,来介绍下如何优化输入提示词。跑 AI 的过程就像抽卡,抽出一堆卡,选出你审美范畴里觉得好看的。

1.提示词各式优化

第一段:画质 tag,画风 tag

第二段:画面主体,主体强调,主体细节概括(主体可以是人、事、物、景)画面核心内容

第三段:画面场景细节,或人物细节,embedding tag。画面细节内容

举个例子:(具体场景还是要灵活应用,多尝试,找到合适自己的节奏和风格)

第一段:masterpiece, best quality, 4k, ( Pixar - style :1.4)

第二段:1boy,(Cute,handsome,wearing outdoor sportswear :0.7), 3D,(Face close-up :1.2), (at night, surrounded by glowing plants, flowers, flying fireflies, bonfires), (Ultra detailed, aesthetic, beautiful composition, rich bright colors, volumetric soft light)

第三段:Inspired by Alice in Wonderland, magic, fairy tales. unreal Engine, octane render, cuteness render, awe inspiring, beautiful,

通用人物负面提示词
nsfw,(mutated hands and fingers:1.4), (worst quality:2), (low quality:2), (normal quality:2),bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, tattoo,cropped, backlight, ng_deepnegative_v1_75t, EasyNegative.
效果图如下
在这里插入图片描述
在这里插入图片描述

2.Prompt 规则细节

  • ①越靠前的 Tag 权重越大。

  • ②生成图片的大小会影响 Prompt 的效果,图片越大需要的 Prompt 越多,不然 Prompt 会相互污染。

  • ③Stable-diffusion 中,可以使用括号人工修改提示词的权重,方法如下:

    • (word) - 将权重提高 1.1 倍
    • ((word)) - 将权重提高 1.21 倍(= 1.1 * 1.1)
    • [word] - 将权重降低至原先的 90.91%
    • (word:1.5) - 将权重提高 1.5 倍
    • (word:0.25) - 将权重减少为原先的 25%
  • ④Prompt 支持使用 emoji,可通过添加 emoji 达到表现效果。如“表情图标"修表情,“手图像”修手。

  • ⑤“+” , “ AND” , “|” 用法:“+”和“ AND ”都是用于连接短 Tag,但 AND 两端要加空格。"+“约等于” and ";“|” 为循环绘制符号(融合符号)(Prompt A: w1)|(Prompt B: w2)

以上表达适用于 WebUI,w1、w2 为权重。AI 会对 A、B 两 Prompt 进行循环绘制。可往后无限加入 Prompt。

  • ⑥tag 不一定是多么充满细节,只要模型稳定。小图+高分辨率重绘。800400 的图变成 1600800,初识小图减少崩坏概率。

  • ⑦关键词最好具有特异性,譬如 Anime(动漫)一词就相对泛化,而 JoJo 一词就能清晰地指向 JoJo 动漫的画风。措辞越不抽象越好,尽可能避免留下解释空间的措辞。

对蓝眼睛进行测试,效果如下:
正向提示词:1 cat, blue eyes,
负面提示词:nsfw,(mutated hands and fingers:1.4), (worst quality:2), (low quality:2), (normal quality:2),bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, tattoo,cropped, backlight, ng_deepnegative_v1_75t, EasyNegative.

在这里插入图片描述
效果是提示的影响主键增大,建议不要超过1.5倍

3.小技巧分享

1)如果你在C站或者哩卟看到喜欢的图,想了解别人是如何设置,如下操作可以查看
C站的示例

在这里插入图片描述
哩卟示例
在这里插入图片描述

2)如果是网上找的图片,则可以利用stable difusion自带的功能对图片进行分析,如下所示
以这张图片为例:

在这里插入图片描述

在这里插入图片描述

好了

<think>好的,我现在需要回答用户关于Stable Diffusion算法或模型的问题。首先,我需要回顾已有的引用资料,确保回答准确。根据引用[1],Stable Diffusion使用了EMA技术来稳定和提升模型性能。引用[2]提到它与GAN、VAE相比的优势,包括生成质量、稳定性和多样性,还提到工作原理部分。引用[3]提供了Hugging Face的模型链接。 接下来,我需要整理Stable Diffusion的基本概念。它属于生成模型,主要用于图像和视频生成。结合扩散模型的概念,可能涉及逐步去噪的过程。需要解释其核心思想,比如正向扩散和逆向去噪。同时要提到潜在空间的应用,这样能降低计算量。 工作原理部分,根据引用[2],需要分步骤说明:正向扩散、逆向去噪,以及潜在空间的作用。可能还需要提到变分推断或噪声预测网络等技术细节。 在优势方面,对比GAN和VAE,强调生成质量、训练稳定性、多样性,这些都是引用[2]提到的。应用场景部分,可以包括图像生成、编辑、超分辨率等,需要具体例子。 此外,需要确保使用正确的中文术语,并按照用户要求的结构组织内容,保持清晰。注意数学公式使用$$...$$格式,例如扩散过程的公式可能涉及时间步的噪声添加,但用户提供的引用中没有具体公式,可能需要避免假设,或者简要提及而不深入数学细节。 最后,生成相关问题时要围绕Stable Diffusion的应用、优化、与其他模型的比较等方面提问。例如,如何训练、优化方法、与其他生成模型的不同等。 检查是否有遗漏的信息,比如潜在扩散模型(Latent Diffusion Model)是否是其正式名称,引用中的CompVis模型是否属于Stable Diffusion的一部分。需要确认这些细节是否正确,并正确引用来源。 现在开始组织回答,确保各部分符合用户的结构要求,正确引用,并自然融入引用标识。</think>### Stable Diffusion模型详解 Stable Diffusion是一种基于**扩散模型**(Diffusion Model)的生成模型,主要用于生成高质量的图像和视频。其核心思想是通过逐步添加和去除噪声的过程来学习数据分布,最终实现从随机噪声到目标数据的生成[^2]。 #### 核心原理 1. **正向扩散过程** 将输入图像$x_0$通过多步逐步添加高斯噪声,直到完全变为随机噪声$x_T$。数学表示为: $$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1-\alpha_t} \epsilon_t \quad (\epsilon_t \sim \mathcal{N}(0,I))$$ 其中$\alpha_t$控制噪声添加的速率。 2. **逆向去噪过程** 通过训练神经网络(如U-Net)预测噪声$\epsilon_\theta$,逐步从$x_T$恢复原始数据: $$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(x_t,t) \right) + \sigma_t z \quad (z \sim \mathcal{N}(0,I))$$ 这里$\bar{\alpha}_t$是累积乘积系数,$\sigma_t$为方差参数。 3. **潜在空间优化** Stable Diffusion引入**潜在扩散模型**(Latent Diffusion Model),先将图像编码到低维潜在空间(如通过VAE),再在该空间进行扩散过程,大幅降低计算量[^2]。 #### 关键优势 1. **生成质量**:生成的图像细节丰富,接近真实照片[^2]。 2. **训练稳定性**:通过EMA(指数移动平均)技术平滑模型参数更新,避免训练震荡[^1]。 3. **计算效率**:潜在空间处理使模型可在消费级GPU上运行[^3]。 #### 应用场景 - **文生图**(Text-to-Image):根据文本描述生成图像(如DALL·E竞品) - **图像修复**:补全图像缺失区域 - **超分辨率重建**:提升低分辨率图像质量 - **风格迁移**:改变图像艺术风格 ```python # Stable Diffusion核心伪代码示例 def reverse_process(x_t, t, text_embedding): # 预测噪声(融合文本条件) predicted_noise = unet(x_t, t, encoder_hidden_states=text_embedding) # 计算去噪后的x_{t-1} x_{t-1} = x_t - predicted_noise * schedule(t) return x_{t-1} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值