最近在看TensorFlow的YouTube频道
https://www.youtube.com/tensorflow
内容挺多,不过只看一遍的话,基本过一遍也就都忘了,所以随手记下来一些概念,凭印象写的,加上英语不好,内容不一定正确,后续再验证并修正
1. tf.hub,说是一行代码完成训练,应该是封装的很好的一个模块,后续再学习一下
2. eager模式,大致应该是命令式编程,就是以前TensorFlow的代码,执行的时候,你以为它执行了,实际上他只是在构建模型,并没有进行实际的运算,而在eager模式下执行了一行实际发生了真实的计算,结果是直接出来可以直接打印了
3. autograph,大致应该是以前是用的session,而且某些条件语句,如 if 之类的,不能像Python那样写代码,有了这个之后,就可以像其他 Python 那样写代码了,它会自动转换成TensorFlow的底层封装代码
4. TensorFlow lite的剪枝,https://www.youtube.com/watch?v=DKosV_-4pdQ ,是这个视频里提到了,23分钟开始,我之前还没做过剪枝,大致关键字应该是 quantize.Quantize(),还有prune.Prune()(25:50左右)
5. 看起来像是Keras自动调整超参数, https://www.youtube.com/watch?v=Un0JDL3i5Hg , 关键字 Keras Tuner
6. 2D画面估计3D信息,TF-Graphics, https://www.youtube.com/watch?v=Un0JDL3i5Hg(跟上面同一个视频)
7. Google Coral,看起来是一个硬件?像是移动版的GPU
8. tf.text, tensorflow 内置的 bert, 反正是文本处理, pip install tensorflow_text
9. NSL, pip install neural-structured-learning, Neural Structured Learning没看懂,感觉大致是可以用较少的标签训练出较好的效果,感觉是一个趋势;
10. FaceMesh, 超高分辨率人脸关键点获取,https://www.youtube.com/watch?v=kKp7HLnPDxc,用JavaScript实现
https://storage.googleapis.com/tfjs-models/demos/facemesh/index.html
https://github.com/tensorflow/tfjs-models/tree/master/body-pix
11. 剪枝及量化 https://www.youtube.com/watch?v=4iq-d2AmfRU,
12. tflite相关的一点东西 https://www.youtube.com/watch?v=ALxWJoh_BHw