在观察研究中减少数据偏倚:倾向评分(一)

本文探讨了在观察性研究中减少数据偏倚的倾向评分方法,包括Propensity Score Matching (PSM)和Stratification on the Propensity Score。倾向评分有助于消除基线不平衡和数据偏倚,确保研究结果的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在观察研究中减少数据偏倚:倾向评分(一)

说在前面:
本文主要参考的是文章An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies。因为本人是学人工智能的,不是学医的,有些医学概念可能翻译的不对,请大家谅解。

文章简介

这篇文章的介绍了4中倾向评分,这次先写到了前两种常用的,后面两种日后会进行更新。这四种倾向评分方法分别是:

  1. Matching on the propensity score
  2. Stratification on the propensity score
  3. Inverse probability of treatment weighting using the propensity score (IPWPS)
  4. Covariate adjustment using the propensity score

RCT与观察性研究

众所周知的是,Randomized controlled trials (RCTs) 经常被作为评价治疗方案、干涉和暴露影响的一个金标准。RCTs保证了在实验过程中,基线资料没有混淆的情况。也因此RCTs的结果也会经常用来比较治疗方案的结果。

但是RCTs在实际的应用过程中仍然存在着一些问题。第一个问题就是,RCTs由于它实验的设计需要严格的去挑选病人,本身就可能存在着选择偏倚,更由于研究者们通常倾向于去选择好的病人去做实验,也就使得RCTs的结果很难外推到真实世界中。同时由于有的RCT实验病人数目很小,很难捕捉到罕发事件,对于发病率低的病症根本无能为力。

但是第一个问题可以由现如今的时效RCT来一定程度上解决。但是时效性的RCT需要的病人基数极其庞大,实验难度非常高,如果做出来就肯定能发Top 7的那种。但是对于部分临床试验来说,本身做RCT就存在着伦理、隐私等等的困难,怎么可能又去做基数如此之大的实验?

这时候,观察性研究就映入了人们的眼帘。由于大量的数据记录,使得数据量得以保证,尤其是对于罕发事件的研究得到了一定程度的保障。但是观察性研究也存在着它自己的问题,也就是数据偏倚的问题。

由于本身观察性研究就是平等的去记录,难免会出现两组/多组方案基线不平衡的问题,这时候直接通过结果去对方案进行评估难免是会有误差的。那么倾向性评分就可以出场了。倾向评分的配对方法可以在很大程度上消除基线不平衡的问题。同时,在进行多元回归的时候,由于共线性的存在会造成多元分析不准确,那么使用倾向性评分将共线性的变量映射到1维的变量,即降维,也可以消除共线性变量的影响。后一点在本文不做讨论。

The Potential Outcomes Framework and Average Treatment Effects

我们首先来简单介绍一下在potential outcomes framework中如何评价两种治疗方案。

如果我们假设给定了病人样本以及治疗方案,那么每一个病人都有一对潜在的结局: Y i ( 0 ) Y_i(0) Yi(0) Y i ( 1 ) Y_i(1) Yi(1),分别代表着在控制方案和激活方案中。然而对于每一位病人,只能有接受一种方案,我们用 Z Z Z 来表示( Z = 0 Z=0 Z=0<

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值