在观察研究中减少数据偏倚:倾向评分(一)
说在前面:
本文主要参考的是文章An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
。因为本人是学人工智能的,不是学医的,有些医学概念可能翻译的不对,请大家谅解。
文章简介
这篇文章的介绍了4中倾向评分,这次先写到了前两种常用的,后面两种日后会进行更新。这四种倾向评分方法分别是:
- Matching on the propensity score
- Stratification on the propensity score
- Inverse probability of treatment weighting using the propensity score (IPWPS)
- Covariate adjustment using the propensity score
RCT与观察性研究
众所周知的是,Randomized controlled trials (RCTs) 经常被作为评价治疗方案、干涉和暴露影响的一个金标准。RCTs保证了在实验过程中,基线资料没有混淆的情况。也因此RCTs的结果也会经常用来比较治疗方案的结果。
但是RCTs在实际的应用过程中仍然存在着一些问题。第一个问题就是,RCTs由于它实验的设计需要严格的去挑选病人,本身就可能存在着选择偏倚,更由于研究者们通常倾向于去选择好的病人去做实验,也就使得RCTs的结果很难外推到真实世界中。同时由于有的RCT实验病人数目很小,很难捕捉到罕发事件,对于发病率低的病症根本无能为力。
但是第一个问题可以由现如今的时效RCT来一定程度上解决。但是时效性的RCT需要的病人基数极其庞大,实验难度非常高,如果做出来就肯定能发Top 7的那种。但是对于部分临床试验来说,本身做RCT就存在着伦理、隐私等等的困难,怎么可能又去做基数如此之大的实验?
这时候,观察性研究就映入了人们的眼帘。由于大量的数据记录,使得数据量得以保证,尤其是对于罕发事件的研究得到了一定程度的保障。但是观察性研究也存在着它自己的问题,也就是数据偏倚的问题。
由于本身观察性研究就是平等的去记录,难免会出现两组/多组方案基线不平衡的问题,这时候直接通过结果去对方案进行评估难免是会有误差的。那么倾向性评分就可以出场了。倾向评分的配对方法可以在很大程度上消除基线不平衡的问题。同时,在进行多元回归的时候,由于共线性的存在会造成多元分析不准确,那么使用倾向性评分将共线性的变量映射到1维的变量,即降维,也可以消除共线性变量的影响。后一点在本文不做讨论。
The Potential Outcomes Framework and Average Treatment Effects
我们首先来简单介绍一下在potential outcomes framework中如何评价两种治疗方案。
如果我们假设给定了病人样本以及治疗方案,那么每一个病人都有一对潜在的结局: Y i ( 0 ) Y_i(0) Yi(0) 和 Y i ( 1 ) Y_i(1) Yi(1),分别代表着在控制方案和激活方案中。然而对于每一位病人,只能有接受一种方案,我们用 Z Z Z 来表示( Z = 0 Z=0 Z=0<