因果推断——倾向性得分(PSM)-基于Stata操作分析

本文介绍了倾向性得分在研究中的重要性,包括其定义、影响因素的选择、匹配方法(精确匹配、近邻匹配等),以及在Stata中的具体操作。作者还展示了Probit模型和Logit模型在计算中的应用,以及如何通过PSM进行因果推断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倾向性得分主要操作及分析

  • 计算倾向性得分(pscore)
  • 根据倾向性得分进行处理组与控制组的匹配
  • 实验组与匹配对象进行对比
  • 求平均处理效应(ATE)、处理组平均处理效应(ATT)、控制组平均处理效应(ATU)
  • PSM匹配数据进行回归

 一、倾向性得分定义

P(x_{1},x_{2},...,x_{n})=Pr(D=1|x_{1},x_{2},...,x_{n})

在已知协变量x_{1},x_{2},...,x_{n}后,个体选择接受处理行为的概率

原理:

  • 构造假想实验不需要所有维度一一匹配,倾向性得分这一个维度匹配即可

二、 如何选择影响因素x_{1},x_{2},...,x_{n}

  1. 选择既影响个体选择接受处理行为概率,又影响特征值(Y_{i})
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值