欧拉公式证明 详细版

欧拉公式

在复数域中, 对于 x x x:
e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx
其中 e e e欧拉数, i i i虚部单位
x = π x=\pi x=π时,
e i π = cos ⁡ π + i sin ⁡ π = − 1 e i π + 1 = 0 i π = ln ⁡ ( − 1 ) \begin{array}{c} e^{i\pi}=\cos\pi+i\sin\pi=-1 \\ e^{i\pi}+1=0 \\ i\pi = \ln(-1) \end{array} e=cosπ+isinπ=1e+1=0=ln(1)

证明

z = a + b i ∈ C z = a+bi \in \mathbb{C} z=a+biC , a , b ∈ R a, b\in\mathbb{R} a,bR . 已知定理 lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e nlim(1+n1)n=e
那么
lim ⁡ n → ∞ ( 1 + z n ) n = lim ⁡ n → ∞ ( ( 1 + z n ) n z ) z = ( lim ⁡ n → ∞ ( 1 + z n ) n z ) z = e z \begin{aligned} \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n &= \lim_{n\to\infty}\left(\left(1+\frac{z}{n}\right)^\frac{n}{z}\right)^z \\ &= \left(\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^\frac{n}{z}\right)^z \\ & = e^z \end{aligned} nlim(1+nz)n=nlim((1+nz)zn)z=(nlim(1+nz)zn)z=ez
e a + b i = lim ⁡ n → ∞ ( 1 + a + b i n ) n e^{a+bi}=\lim_{n\to\infty}\left(1+\frac{a+bi}{n}\right)^n ea+bi=nlim(1+na+bi)n
( 1 + a + b i n ) n = ( n + a n + b n i ) n = r n ( cos ⁡ θ n + i sin ⁡ θ n ) \left(1+\frac{a+bi}{n}\right)^n=\left(\frac{n+a}{n}+\frac{b}{n}i\right)^n = r_n(\cos\theta_n+i\sin\theta_n) (1+na+bi)n=(nn+a+nbi)n=rn(cosθn+isinθn)
根据 棣莫弗定理 有:
r n = [ ( 1 + a n ) 2 + ( b n ) 2 ] n 2 r_n=\left[\left(1+\frac{a}{n}\right)^2+\left(\frac{b}{n}\right)^2\right]^\frac{n}{2} rn=[(1+na)2+(nb)2]2n θ n = n arctan ⁡ b n + a \theta_n=n\arctan\frac{b}{n+a} θn=narctann+ab
lim ⁡ n → ∞ ln ⁡ r n = lim ⁡ n → ∞ n 2 ln ⁡ ( 1 + 2 a n + a 2 + b 2 n 2 ) = lim ⁡ n → ∞ n 2 ( 2 a n + a 2 + b 2 n 2 ) = a \begin{aligned} \lim_{n\to\infty}\ln r_n &=\lim_{n\to\infty}\frac{n}{2}\ln\left(1+\frac{2a}{n}+\frac{a^2+b^2}{n^2}\right)\quad \\ &= \lim_{n\to\infty}\frac{n}{2}\left(\frac{2a}{n}+\frac{a^2+b^2}{n^2}\right) \\ &= a \end{aligned} nlimlnrn=nlim2nln(1+n2a+n2a2+b2)=nlim2n(n2a+n2a2+b2)=a
(此处应用了麦克劳林公式).
所以
lim ⁡ n → ∞ r n = e a \lim_{n\to\infty}r_n=e^a nlimrn=ea
又有
lim ⁡ n → ∞ θ n = lim ⁡ n → ∞ n arctan ⁡ b n 1 + n a = lim ⁡ n → ∞ b n n + a = b \begin{aligned} \lim_{n\to\infty}\theta_n&=\lim_{n\to\infty}n\arctan\frac{\frac{b}{n}}{1+\frac{n}{a}} \\ &= \lim_{n\to\infty}\frac{bn}{n+a} \\ &= b \end{aligned} nlimθn=nlimnarctan1+annb=nlimn+abn=b
(此处也应用了麦克劳林公式)
从以上式子可得:
e a + b i = lim ⁡ n → ∞ ( n + a n + b n i ) n = lim ⁡ n → ∞ r n ( cos ⁡ θ n + i sin ⁡ θ n ) = e a ( cos ⁡ b + i sin ⁡ b ) \begin{aligned} e^{a+bi} &=\lim_{n\to\infty}(\frac{n+a}{n}+\frac{b}{n}i)^n \\ &=\lim_{n\to\infty}r_n(\cos\theta_n+i\sin\theta_n) \\ &=e^a(\cos b + i\sin b) \end{aligned} ea+bi=nlim(nn+a+nbi)n=nlimrn(cosθn+isinθn)=ea(cosb+isinb)
a = 0 a = 0 a=0,
e b i = cos ⁡ b + i sin ⁡ b e^{bi}=\cos b+i\sin b ebi=cosb+isinb

e x i = cos ⁡ x + i sin ⁡ x e^{xi}=\cos x+i\sin x exi=cosx+isinx
证毕。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值