欧拉函数 φ ( n ) \varphi(n) φ(n)计算公式的证明
1、简介
欧拉函数
φ
(
n
)
\varphi(n)
φ(n)指的是模
n
n
n剩余类环中,与
n
n
n互素的数的个数。我们知道若
n
n
n的标准素数分解是
n
=
∏
i
=
1
k
p
i
e
i
n=\prod_{i=1}^{k}p_{i}^{e_{i}}
n=∏i=1kpiei,则
φ
(
n
)
=
∏
i
=
1
k
(
p
i
e
i
−
p
i
e
i
−
1
)
=
n
∏
i
=
1
k
(
1
−
1
p
i
)
\varphi(n)=\prod_{i=1}^{k}(p_{i}^{e_{i}}-p_{i}^{e_{i}-1})=n\prod_{i=1}^{k}(1-\frac{1}{p_{i}})
φ(n)=i=1∏k(piei−piei−1)=ni=1∏k(1−pi1)
这篇博客主要推导如何证明这个式子。
2、证明
2.1 定理一:若 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn)=\varphi(m) \varphi(n) φ(mn)=φ(m)φ(n)
要证明这个定理,首先需要了解两个基本的引理
引理一 若
(
m
,
n
)
=
1
(m,n)=1
(m,n)=1,则
Z
m
n
=
{
m
y
+
n
x
∣
x
∈
Z
m
,
y
∈
Z
n
}
\mathbb{Z}_{mn}=\lbrace my+nx|x\in \mathbb{Z}_{m},y\in \mathbb{Z}_{n}\rbrace
Zmn={my+nx∣x∈Zm,y∈Zn}
引理二 若 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 Z m n ∗ = { m y + n x ∣ x ∈ Z m ∗ , y ∈ Z n ∗ } \mathbb{Z}_{mn}^{*}=\lbrace my+nx|x\in \mathbb{Z}_{m}^{*},y\in \mathbb{Z}_{n}^{*}\rbrace Zmn∗={my+nx∣x∈Zm∗,y∈Zn∗}
证明:首先, ( m y + n x , m n ) = 1 (my+nx,mn)=1 (my+nx,mn)=1。否则的话,必有素数 p p p,使得 p ∣ ( m n , m y + n x ) p|(mn,my+nx) p∣(mn,my+nx),不妨 p ∣ m p|m p∣m,则 p ∣ n x p|nx p∣nx。因为 ( m , n ) = 1 (m,n)=1 (m,n)=1,所以 ( p , n ) = 1 (p,n)=1 (p,n)=1,从而 p ∣ x p|x p∣x,即 p ∣ ( m , x ) p|(m,x) p∣(m,x),这是不可能的,因为 x ∈ Z m x\in \mathbb{Z}_{m} x∈Zm.
其次, ∀ a ∈ Z m n ∗ \forall a\in \mathbb{Z}_{mn}^{*} ∀a∈Zmn∗有 a = m y + n x a=my+nx a=my+nx,其中 ( x , m ) = ( n , y ) = 1 (x,m)=(n,y)=1 (x,m)=(n,y)=1。由引理一,一定有 x , y x,y x,y满足 a = m y + n x a=my+nx a=my+nx,只需证 ( x , m ) = ( n , y ) = 1 (x,m)=(n,y)=1 (x,m)=(n,y)=1。假若 ( x , m ) = d ≠ 1 (x,m)=d\ne 1 (x,m)=d=1,则 ( a , m ) = ( m y + n x , m ) = ( n x , m ) = ( x , m ) = d ≠ 1 (a,m)=(my+nx,m)=(nx,m)=(x,m)=d\ne1 (a,m)=(my+nx,m)=(nx,m)=(x,m)=d=1,这与假设的 a ∈ Z m n ∗ a\in \mathbb{Z}_{mn}^{*} a∈Zmn∗矛盾。
因此得证。
由引理二 ,很容易证明本定理。
2.2 定理二:对素数 p p p, φ ( p α ) = p α − p α − 1 \varphi(p^{\alpha})=p^{\alpha}-p^{\alpha-1} φ(pα)=pα−pα−1
证明:模 p α p^{\alpha} pα的剩余类中,有 p α p^{\alpha} pα个数,其中,与 p α p^{\alpha} pα不互素的数是: 0 , p , 2 p , 3 p , ⋯ p α − 2 p 0,p,2p,3p,\cdots p^{\alpha-2}p 0,p,2p,3p,⋯pα−2p,这有 p α − 1 p^{\alpha-1} pα−1个数,所以与 p α p^{\alpha} pα互素的数有 p α − p α − 1 p^{\alpha}-p^{\alpha-1} pα−pα−1个,定理得证。
由定理一和定理二,容易求得欧拉公式。