欧拉函数varphi(n)计算公式的证明

博客主要围绕欧拉函数φ(n)计算公式展开证明。先介绍欧拉函数指模n剩余类环中与n互素的数的个数及计算公式,接着证明两个定理,一是若(m,n)=1,则φ(mn)=φ(m)φ(n);二是对素数p,φ(pα)=pα−pα−1,最后由这两个定理得出欧拉公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉函数 φ ( n ) \varphi(n) φ(n)计算公式的证明

1、简介

欧拉函数 φ ( n ) \varphi(n) φ(n)指的是模 n n n剩余类环中,与 n n n互素的数的个数。我们知道若 n n n的标准素数分解是 n = ∏ i = 1 k p i e i n=\prod_{i=1}^{k}p_{i}^{e_{i}} n=i=1kpiei,则
φ ( n ) = ∏ i = 1 k ( p i e i − p i e i − 1 ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n)=\prod_{i=1}^{k}(p_{i}^{e_{i}}-p_{i}^{e_{i}-1})=n\prod_{i=1}^{k}(1-\frac{1}{p_{i}}) φ(n)=i=1k(pieipiei1)=ni=1k(1pi1)
这篇博客主要推导如何证明这个式子。

2、证明

2.1 定理一:若 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn)=\varphi(m) \varphi(n) φ(mn)=φ(m)φ(n)

要证明这个定理,首先需要了解两个基本的引理

引理一 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 Z m n = { m y + n x ∣ x ∈ Z m , y ∈ Z n } \mathbb{Z}_{mn}=\lbrace my+nx|x\in \mathbb{Z}_{m},y\in \mathbb{Z}_{n}\rbrace Zmn={my+nxxZm,yZn}
在这里插入图片描述

引理二 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 Z m n ∗ = { m y + n x ∣ x ∈ Z m ∗ , y ∈ Z n ∗ } \mathbb{Z}_{mn}^{*}=\lbrace my+nx|x\in \mathbb{Z}_{m}^{*},y\in \mathbb{Z}_{n}^{*}\rbrace Zmn={my+nxxZm,yZn}

证明:首先, ( m y + n x , m n ) = 1 (my+nx,mn)=1 (my+nx,mn)=1。否则的话,必有素数 p p p,使得 p ∣ ( m n , m y + n x ) p|(mn,my+nx) p(mn,my+nx),不妨 p ∣ m p|m pm,则 p ∣ n x p|nx pnx。因为 ( m , n ) = 1 (m,n)=1 (m,n)=1,所以 ( p , n ) = 1 (p,n)=1 (p,n)=1,从而 p ∣ x p|x px,即 p ∣ ( m , x ) p|(m,x) p(m,x),这是不可能的,因为 x ∈ Z m x\in \mathbb{Z}_{m} xZm.

其次, ∀ a ∈ Z m n ∗ \forall a\in \mathbb{Z}_{mn}^{*} aZmn a = m y + n x a=my+nx a=my+nx,其中 ( x , m ) = ( n , y ) = 1 (x,m)=(n,y)=1 (x,m)=(n,y)=1。由引理一,一定有 x , y x,y x,y满足 a = m y + n x a=my+nx a=my+nx,只需证 ( x , m ) = ( n , y ) = 1 (x,m)=(n,y)=1 (x,m)=(n,y)=1。假若 ( x , m ) = d ≠ 1 (x,m)=d\ne 1 (x,m)=d=1,则 ( a , m ) = ( m y + n x , m ) = ( n x , m ) = ( x , m ) = d ≠ 1 (a,m)=(my+nx,m)=(nx,m)=(x,m)=d\ne1 (a,m)=(my+nx,m)=(nx,m)=(x,m)=d=1,这与假设的 a ∈ Z m n ∗ a\in \mathbb{Z}_{mn}^{*} aZmn矛盾。

因此得证。

引理二 ,很容易证明本定理。

2.2 定理二:对素数 p p p φ ( p α ) = p α − p α − 1 \varphi(p^{\alpha})=p^{\alpha}-p^{\alpha-1} φ(pα)=pαpα1

证明:模 p α p^{\alpha} pα的剩余类中,有 p α p^{\alpha} pα个数,其中,与 p α p^{\alpha} pα不互素的数是: 0 , p , 2 p , 3 p , ⋯ p α − 2 p 0,p,2p,3p,\cdots p^{\alpha-2}p 0,p,2p,3p,pα2p,这有 p α − 1 p^{\alpha-1} pα1个数,所以与 p α p^{\alpha} pα互素的数有 p α − p α − 1 p^{\alpha}-p^{\alpha-1} pαpα1个,定理得证。

由定理一和定理二,容易求得欧拉公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值