方向导数和梯度

1. 方向导数

方向导数,描述函数沿指定方向的变化率。

若函数 f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微,则函数在该点沿任一方向 l l l的方向导数存在,且有
∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \frac{\partial f}{\partial l} \Big |_{(x_0,y_0)}=f_x(x_0,y_0)\cos\alpha + f_y(x_0,y_0)\cos\beta lf(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ

其中 cos ⁡ α \cos \alpha cosα cos ⁡ β \cos \beta cosβ是方向 l l l的方向余弦。

可微、全微分、偏导数

若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某邻域内有定义,函数在点 ( x , y ) (x, y) (x,y)处的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x, y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y),可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) , ρ = ( Δ x ) 2 + ( Δ y ) 2 \Delta z = A\Delta x + B\Delta y + o(\rho), \quad \rho=\sqrt{(\Delta x)^2 + (\Delta y)^2} Δz=AΔx+BΔy+o(ρ),ρ=(Δx)2+(Δy)2

其中 A A A B B B不依赖于 Δ x \Delta x Δx Δ y \Delta y Δy,且仅与 x x x y y y有关,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x , y ) (x,y) (x,y)可微分,全微分 d z = A Δ x + B Δ y \mathrm dz=A\Delta x + B\Delta y dz=AΔx+BΔy

(必要条件)若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微分,则函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的偏导数 ∂ z ∂ x \dfrac{\partial z}{\partial x} xz ∂ z ∂ y \dfrac{\partial z}{\partial y} yz必定存在,此时全微分
d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y y ⟺ d z = ∂ z ∂ x d x + ∂ z ∂ y d y \mathrm dz=\dfrac{\partial z}{\partial x} \Delta x + \dfrac{\partial z}{\partial y} \Delta yy \quad \Longleftrightarrow \quad \mathrm dz = \dfrac{\partial z}{\partial x} \mathrm dx + \dfrac{\partial z}{\partial y} \mathrm dy dz=xzΔx+yzΔyydz=xzdx+yzdy


(充分条件)若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x \dfrac{\partial z}{\partial x} xz ∂ z ∂ y \dfrac{\partial z}{\partial y} yz在点 ( x , y ) (x,y) (x,y)处连续,则函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微。

综上所述:可微    ⟹    \implies 偏导存在 \quad 偏导存在且连续    ⟹    \implies 可微

证明:方向导数
f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微,故
f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y +o(\sqrt{(\Delta x)^2 + (\Delta y)^2}) f(x0+Δx,y0+Δy)f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2 )

Δ x = t cos ⁡ α \Delta x=t\cos\alpha Δx=tcosα Δ y = t cos ⁡ β \Delta y=t\cos\beta Δy=tcosβ Δ x ) 2 + ( Δ y ) 2 = t \sqrt{\Delta x)^2 + (\Delta y)^2}=t Δx)2+(Δy)2 =t,因此方向导数
lim ⁡ t → 0 + f x ( x 0 , y 0 ) t cos ⁡ α + f y ( x 0 , y 0 ) t cos ⁡ β t = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \lim_{t \to 0^+}\frac{f_x(x_0,y_0)t\cos\alpha+f_y(x_0,y_0)t\cos\beta}{t}=f_x(x_0,y_0)\cos\alpha + f_y(x_0,y_0)\cos\beta t0+limtfx(x0,y0)tcosα+fy(x0,y0)tcosβ=fx(x0,y0)cosα+fy(x0,y0)cosβ

例题

f ( x , y , z ) = x y + y z + z x f(x,y,z)=xy+yz+zx f(x,y,z)=xy+yz+zx在点 ( 1 , 1 , 2 ) (1,1,2) (1,1,2)沿方向 l l l的方向导数,其中 l l l的方向角分别为 6 0 ∘ 60^\circ 60 4 5 ∘ 45^\circ 45 6 0 ∘ 60^\circ 60

解:
l l l同向的单位向量 e l = ( 1 2 , 2 2 , 1 2 ) \bm e_l=(\dfrac{1}{2},\dfrac{\sqrt 2}{2}, \dfrac{1}{2}) el=(21,22 ,21),因为函数可微,故
f x ( 1 , 1 , 2 ) = 3 , f y ( 1 , 1 , 2 ) = 3 , f z ( 1 , 1 , 2 ) = 2 f_x(1,1,2)=3, \quad f_y(1,1,2)=3, \quad f_z(1,1,2)=2 fx(1,1,2)=3,fy(1,1,2)=3,fz(1,1,2)=2

因此
∂ f ∂ l ∣ ( 1 , 1 , 2 ) = 3 ⋅ 1 2 + 3 ⋅ 2 2 + 2 ⋅ 1 2 = 1 2 ( 5 + 3 2 ) . \frac{\partial f}{\partial l}\Big|_{(1,1,2)}=3\cdot\frac{1}{2} + 3\cdot\frac{\sqrt 2}{2} + 2\cdot\frac{1}{2} = \frac{1}{2}(5+3\sqrt 2). lf(1,1,2)=321+322 +221=21(5+32 ).

2. 梯度

对于二元函数,设函数 f ( x , y ) f(x,y) f(x,y)在平面区域 D D D内具有一阶连续偏导,则对于每一点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D,定义向量
f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j f_x(x_0, y_0)\bm i + f_y(x_0,y_0)\bm j fx(x0,y0)i+fy(x0,y0)j

称为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处的梯度,记作 g r a d   f ( x 0 , y 0 ) {\bf{grad}} \,f(x_0,y_0) gradf(x0,y0) ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) f(x0,y0)

3. 方向导数与梯度关系

若函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微分,与方向 l l l同方向的单位向量 e l = ( cos ⁡ α , cos ⁡ β ) \bm e_l=(\cos \alpha, \cos\beta) el=(cosα,cosβ),则
∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β = g r a d   f ( x 0 , y 0 ) ⋅ e l = ∣ g r a d   f ( x 0 , y 0 ) ∣ ⋅ cos ⁡ θ \begin{aligned} \frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} & =f_x(x_0,y_0)\cos\alpha +f_y(x_0,y_0)\cos\beta \\ &={\bf{grad}}\,f(x_0,y_0)\cdot \bm e_l = |{\bf{grad}}\,f(x_0,y_0)|\cdot \cos \theta \end{aligned} lf(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)el=gradf(x0,y0)cosθ

式中, θ \theta θ为梯度与方向 l l l的夹角。

(1)当 θ = 0 \theta=0 θ=0,方向 l l l与梯度方向同向,函数 f ( x , y ) f(x,y) f(x,y)增长最快;
(2)当 θ = π \theta=\pi θ=π,方向 l l l与梯度方向相反,函数 f ( x , y ) f(x,y) f(x,y)减少最快;
(3)当 θ = π / 2 \theta=\pi/2 θ=π/2,方向 l l l与梯度方向正交,函数 f ( x , y ) f(x,y) f(x,y)变化率为0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值