1. 方向导数
方向导数,描述函数沿指定方向的变化率。
若函数
f
(
x
,
y
)
f(x, y)
f(x,y)在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0)处可微,则函数在该点沿任一方向
l
l
l的方向导数存在,且有
∂
f
∂
l
∣
(
x
0
,
y
0
)
=
f
x
(
x
0
,
y
0
)
cos
α
+
f
y
(
x
0
,
y
0
)
cos
β
\frac{\partial f}{\partial l} \Big |_{(x_0,y_0)}=f_x(x_0,y_0)\cos\alpha + f_y(x_0,y_0)\cos\beta
∂l∂f∣∣∣(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ
其中 cos α \cos \alpha cosα和 cos β \cos \beta cosβ是方向 l l l的方向余弦。
可微、全微分、偏导数
若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某邻域内有定义,函数在点 ( x , y ) (x, y) (x,y)处的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x, y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)−f(x,y),可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) , ρ = ( Δ x ) 2 + ( Δ y ) 2 \Delta z = A\Delta x + B\Delta y + o(\rho), \quad \rho=\sqrt{(\Delta x)^2 + (\Delta y)^2} Δz=AΔx+BΔy+o(ρ),ρ=(Δx)2+(Δy)2其中 A A A、 B B B不依赖于 Δ x \Delta x Δx、 Δ y \Delta y Δy,且仅与 x x x、 y y y有关,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在 ( x , y ) (x,y) (x,y)处可微分,全微分 d z = A Δ x + B Δ y \mathrm dz=A\Delta x + B\Delta y dz=AΔx+BΔy。
(必要条件)若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微分,则函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的偏导数 ∂ z ∂ x \dfrac{\partial z}{\partial x} ∂x∂z、 ∂ z ∂ y \dfrac{\partial z}{\partial y} ∂y∂z必定存在,此时全微分
d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y y ⟺ d z = ∂ z ∂ x d x + ∂ z ∂ y d y \mathrm dz=\dfrac{\partial z}{\partial x} \Delta x + \dfrac{\partial z}{\partial y} \Delta yy \quad \Longleftrightarrow \quad \mathrm dz = \dfrac{\partial z}{\partial x} \mathrm dx + \dfrac{\partial z}{\partial y} \mathrm dy dz=∂x∂zΔx+∂y∂zΔyy⟺dz=∂x∂zdx+∂y∂zdy
(充分条件)若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x \dfrac{\partial z}{\partial x} ∂x∂z、 ∂ z ∂ y \dfrac{\partial z}{\partial y} ∂y∂z在点 ( x , y ) (x,y) (x,y)处连续,则函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微。综上所述:可微    ⟹    \implies ⟹ 偏导存在 \quad 偏导存在且连续    ⟹    \implies ⟹ 可微
证明:方向导数
由 f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微,故
f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y +o(\sqrt{(\Delta x)^2 + (\Delta y)^2}) f(x0+Δx,y0+Δy)−f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2)且 Δ x = t cos α \Delta x=t\cos\alpha Δx=tcosα, Δ y = t cos β \Delta y=t\cos\beta Δy=tcosβ, Δ x ) 2 + ( Δ y ) 2 = t \sqrt{\Delta x)^2 + (\Delta y)^2}=t Δx)2+(Δy)2=t,因此方向导数
lim t → 0 + f x ( x 0 , y 0 ) t cos α + f y ( x 0 , y 0 ) t cos β t = f x ( x 0 , y 0 ) cos α + f y ( x 0 , y 0 ) cos β \lim_{t \to 0^+}\frac{f_x(x_0,y_0)t\cos\alpha+f_y(x_0,y_0)t\cos\beta}{t}=f_x(x_0,y_0)\cos\alpha + f_y(x_0,y_0)\cos\beta t→0+limtfx(x0,y0)tcosα+fy(x0,y0)tcosβ=fx(x0,y0)cosα+fy(x0,y0)cosβ
例题
求 f ( x , y , z ) = x y + y z + z x f(x,y,z)=xy+yz+zx f(x,y,z)=xy+yz+zx在点 ( 1 , 1 , 2 ) (1,1,2) (1,1,2)沿方向 l l l的方向导数,其中 l l l的方向角分别为 6 0 ∘ 60^\circ 60∘、 4 5 ∘ 45^\circ 45∘、 6 0 ∘ 60^\circ 60∘。
解:
与
l
l
l同向的单位向量
e
l
=
(
1
2
,
2
2
,
1
2
)
\bm e_l=(\dfrac{1}{2},\dfrac{\sqrt 2}{2}, \dfrac{1}{2})
el=(21,22,21),因为函数可微,故
f
x
(
1
,
1
,
2
)
=
3
,
f
y
(
1
,
1
,
2
)
=
3
,
f
z
(
1
,
1
,
2
)
=
2
f_x(1,1,2)=3, \quad f_y(1,1,2)=3, \quad f_z(1,1,2)=2
fx(1,1,2)=3,fy(1,1,2)=3,fz(1,1,2)=2
因此
∂
f
∂
l
∣
(
1
,
1
,
2
)
=
3
⋅
1
2
+
3
⋅
2
2
+
2
⋅
1
2
=
1
2
(
5
+
3
2
)
.
\frac{\partial f}{\partial l}\Big|_{(1,1,2)}=3\cdot\frac{1}{2} + 3\cdot\frac{\sqrt 2}{2} + 2\cdot\frac{1}{2} = \frac{1}{2}(5+3\sqrt 2).
∂l∂f∣∣∣(1,1,2)=3⋅21+3⋅22+2⋅21=21(5+32).
2. 梯度
对于二元函数,设函数
f
(
x
,
y
)
f(x,y)
f(x,y)在平面区域
D
D
D内具有一阶连续偏导,则对于每一点
P
0
(
x
0
,
y
0
)
∈
D
P_0(x_0,y_0)\in D
P0(x0,y0)∈D,定义向量
f
x
(
x
0
,
y
0
)
i
+
f
y
(
x
0
,
y
0
)
j
f_x(x_0, y_0)\bm i + f_y(x_0,y_0)\bm j
fx(x0,y0)i+fy(x0,y0)j
称为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处的梯度,记作 g r a d   f ( x 0 , y 0 ) {\bf{grad}} \,f(x_0,y_0) gradf(x0,y0)或 ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) ∇f(x0,y0)。
3. 方向导数与梯度关系
若函数
f
(
x
,
y
)
f(x,y)
f(x,y)在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0)处可微分,与方向
l
l
l同方向的单位向量
e
l
=
(
cos
α
,
cos
β
)
\bm e_l=(\cos \alpha, \cos\beta)
el=(cosα,cosβ),则
∂
f
∂
l
∣
(
x
0
,
y
0
)
=
f
x
(
x
0
,
y
0
)
cos
α
+
f
y
(
x
0
,
y
0
)
cos
β
=
g
r
a
d
 
f
(
x
0
,
y
0
)
⋅
e
l
=
∣
g
r
a
d
 
f
(
x
0
,
y
0
)
∣
⋅
cos
θ
\begin{aligned} \frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} & =f_x(x_0,y_0)\cos\alpha +f_y(x_0,y_0)\cos\beta \\ &={\bf{grad}}\,f(x_0,y_0)\cdot \bm e_l = |{\bf{grad}}\,f(x_0,y_0)|\cdot \cos \theta \end{aligned}
∂l∂f∣∣∣(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)⋅el=∣gradf(x0,y0)∣⋅cosθ
式中, θ \theta θ为梯度与方向 l l l的夹角。
(1)当
θ
=
0
\theta=0
θ=0,方向
l
l
l与梯度方向同向,函数
f
(
x
,
y
)
f(x,y)
f(x,y)增长最快;
(2)当
θ
=
π
\theta=\pi
θ=π,方向
l
l
l与梯度方向相反,函数
f
(
x
,
y
)
f(x,y)
f(x,y)减少最快;
(3)当
θ
=
π
/
2
\theta=\pi/2
θ=π/2,方向
l
l
l与梯度方向正交,函数
f
(
x
,
y
)
f(x,y)
f(x,y)变化率为0;