Description
求一元二次方程 ax2+bx+c=0 的根,用三个函数分别求当b^2-4ac大于0、等于0、和小于0时的根,并输出结果。从主函数输入a、b、c的值。
Input
一元二次方程的系数a, b, c (|a|, |b|, |c| < 105)
Output
x1=? x2=?(保留3位小数)
Sample Input 
4 1 1
Sample Output
x1=-0.125+0.484i x2=-0.125-0.484i
判别式
利用一元二次方程根的判别式( )可以判断方程的根的情况 。
一元二次方程 的根与根的判别式 有如下关系:
①当 时,方程有两个不相等的实数根;
②当 时,方程有两个相等的实数根;
③当 时,方程无实数根,但有2个共轭复根。
Note:
这里 delta >= 0 放到一起处理比较方便。
delta < 0 时,根号内添负号再计算,拿到结果后,调整输出格式即可得到想要的结果。
#include <stdio.h>
#include <math.h>
int main()
{
double a, b, c, x1, x2, t,delta;
scanf("%lf %lf %lf", &a, &b, &c);
delta = b*b-4*a*c;
if(delta >= 0)
{
x1 = (-b + sqrt(delta)) / (2*a);
x2 = (-b - sqrt(delta)) / (2*a);
printf("%.3lf %.3lf", x1, x2);
}
else
{
x1 = -b / (2*a);
x2 = -b / (2*a);
t = sqrt(-delta)/(2*a);
printf("x1=%.3lf+%.3lfi x2=%.3lf-%.3lfi", x1, t, x2, t);
}
return 0;
}