重要提醒:文中所提及数据,人口和确诊病例数是可查的公开数据,其余数据都是基于常识的估计数据,结果并无任何参考意义,希望大家理解,谢谢。
大家好,我是涅羽。今天我们来研究一下如何利用贝叶斯法则,计算你所在地区的新冠肺炎(COVID-19)患病概率。(本文以美国加利福尼亚州为例)
根据贝叶斯法则,我们知道 P ( A ∣ B ) ∗ P ( B ) = P ( B ∣ A ) ∗ P ( A ) P(A|B)*P(B)=P(B|A)*P(A) P(A∣B)∗P(B)=P(B∣A)∗P(A)。
现在我们定义事件:
事件T+:表示试纸检测阳性;
事件COVID:表示患新冠肺炎。
所以由贝叶斯法则可知,
P ( C O V I D ) = P ( C O V I D ∣ T + ) ∗ P ( T + ) P ( T + ∣ C O V I D ) . P(COVID)= \frac{P(COVID|T^{+})*P(T^{+})}{P(T^{+}|COVID)}. P(COVID)=P(T+∣COVID)P(COVID∣T+)∗P(T+).
其中,1. P ( C O V I D ∣ T + ) P(COVID|T^{+}) P(COVID∣T+):表示核算检测结果为阳性的人,确实患有新冠肺炎的概率。即我们所说的核酸检测的可信度。
2. P ( T + ) P(T^{+}) P(T+): 表示区域内普筛(全体检测或大规模检测)检测阳性的概率。
3. P ( T + ∣ C O V I D ) P(T^{+}|COVID) P(T+∣COVID):表示确实患上新冠肺炎的人,核酸检测阳性的概率。即我们所说的真阳率。
下面我们就来看看1,2,3各部分的数据应该是多少。这里我以2020年7月24日星期五下午八点的网络数据为准。区域设定为 美国,加利福尼亚州。
1. P ( C O V I D ∣ T + ) P(COVID|T^{+}) P(COVID∣T+):这个数据我们是无从考证的,那我们假设美国的设备非常先进,可信度是99%好了。
2. P ( T + ) P(T^{+}) P(T+):这个数据相对麻烦一些,我们知道,普筛当中的阳性结果,包含两个部分:一部分是真的患有新冠肺炎,并且检查出了阳性,即真阳 P ( T + ∣ C O V I D ) P(T^{+}|COVID) P(T+∣COVID);第二部分是并没有患新冠肺炎,但是检查出了阳性,即假阳 P ( T + ∣ ∼ C O V I D ) P(T^{+}|\sim COVID) P(T+∣∼COVID)。根据患病( P ( 患 病 人 群 比 例 ) P(患病人群比例) P(患病人群比例))和没患病( P ( 未 患 病 人 群 比 例 ) P(未患病人群比例) P(未患病人群比例))的人群比例加权相加,我们可知
P ( T + ) = P ( T + ∣ C O V I D ) ∗ P ( 患 病 人 群 比 例 ) + P ( T + ∣ ∼ C O V I D ) ∗ P ( 未 患 病 人 群 比 例 ) P(T^{+})=P(T^{+}|COVID)*P(患病人群比例)+P(T^{+}|\sim COVID)*P(未患病人群比例) P(T+)=P(T+∣COVID)∗P(患病人群比例)+P(T+∣∼COVID)∗P(未患病人群比例)
美国加州人口40M,患病人口400k,我们暂且认为这就是真实的患病人群比例(事实上应该要更高一些),那么 P ( 患 病 人 群 比 例 ) = 1 % P(患病人群比例)=1\% P(患病人群比例)=1%, P ( 未 患 病 人 群 比 例 ) = 99 % P(未患病人群比例)=99\% P(未患病人群比例)=99%。此外,我们假设美国的核酸检测设备真阳率达到惊人的99%,假阳率达到惊人的1%,那么我们得到的结果 P ( T + ) = 1.98 % P(T^{+})=1.98\% P(T+)=1.98%。就是这个所谓普筛的阳性率。3. P ( T + ∣ C O V I D ) P(T^{+}|COVID) P(T+∣COVID):这个部分就不说了,就是我们刚刚提到的按个真阳率,我们取了99%作为它的估值。
综上,我们带入各值, P ( C O V I D ∣ T + ) = 99 % P(COVID|T^{+})=99\% P(COVID∣T+)=99%; P ( T + ) = 1.98 % P(T^{+})=1.98\% P(T+)=1.98%; P ( T + ∣ C O V I D ) = 99 % P(T^{+}|COVID)=99\% P(T+∣COVID)=99%。
那么我们最终得到的 P ( C O V I D ) = 1.98 % P(COVID)=1.98\% P(COVID)=1.98%
即美国加利福尼亚州地区人民,感染新冠肺炎的概率是1.98%。
再次重申:本文只提供一种思路,并不具有任何参考价值,
最后,希望新冠肺炎(COVID-19)能够尽快结束,还地球人民一个正常的生活。
同时,向所有因新冠肺炎不幸罹难的患者表示哀悼。向所有曾经和现在奋斗在抗疫一线的医护人员和各岗位负责人员,致以最崇高的敬意。
地球,加油!!!