What is Boilerplate code?

Boilerplate code refers to sections of code that have to be included in many places with little or no alteration. It is often used when referring to languages that are considered verbose, i.e. the programmer must write a lot of code to do minimal jobs.
注:冗余而又不得不写的代码。

处理方法:

  • metaprogramming (which has the computer automatically write the needed boilerplate code or insert it at compile time)
  • convention over configuration (which provides good default values, reducing the need to specify program details in every project). Eg. Spring Auto Configuration.
  • model-driven engineering (which uses models and model-to-code generators, eliminating the need for boilerplate manual code)
### Pipeline Graphs in Data Processing and CI/CD Systems In the context of data processing, pipeline graphs represent a series of operations that transform raw input into processed output through multiple stages. Each node within such pipelines can be seen as an operator performing specific tasks like filtering, mapping, or aggregating data[^1]. For instance, Spark's execution model leverages these concepts by optimizing logical plans to physical ones using cost-based optimization techniques. For continuous integration (CI) and continuous deployment (CD), pipeline graphs define workflows from code commit until production release. These graphical representations allow developers to visualize each step involved—from running tests on new changesets up till deploying approved versions onto live servers. Tools like Jenkins X, GitLab CI, CircleCI provide visual interfaces where users configure jobs/steps interconnected via directed acyclic graphs (DAG). #### Example Code Snippet Demonstrating Simple ETL Process Using Apache Beam SDK for Python Apache Beam is one framework supporting both batch and stream processing models while abstracting away underlying runners including Google Cloud Dataflow, Flink, etc. ```python import apache_beam as beam with beam.Pipeline() as p: result = ( p | 'ReadFromSource' >> beam.io.ReadFromText('input.txt') | 'ProcessRecords' >> beam.Map(lambda line: process_line(line)) | 'WriteToSink' >> beam.io.WriteToText('output.txt')) ``` This snippet shows how easily complex transformations over large datasets could be expressed declaratively with minimal boilerplate code required around managing distributed computations explicitly. --related questions-- 1. How does predicate pushdown improve query performance during data retrieval? 2. What challenges exist when scaling GCNs to very large networks containing billions of nodes? 3. Can you explain more about DAG structures used in modern CI platforms? 4. In what ways do different big-data frameworks implement their own version of pipelining mechanisms?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值