| 图源
任务态和静息态是大脑的两种状态,前者主要是指大脑在执行记忆、识别以及运动等具体任务时的状态,静息态则是指大脑不执行具体认知任务、保持安静、放松、清醒时的状态,是大脑所处的各种复杂状态中最基础和最本质的状态。任务态fMRI分析有非常悠远的历史,而静息态fMRI自1995年biswal教授及其同事率先报告静息态fMRI具有生理意义后,越来越多的人进入了静息态的研究领域。任务态fMRI主流的分析方法是模型驱动(GLM+HRF),也可以引用静息态fMRI分析方法。静息态fMRI分析方法是数据驱动的,常见的有功能连接(FC)分析——上篇文章介绍,局部一致性(ReHo)分析,低频波动振幅(ALFF)分析——本文介绍。FC、ReHo、ALFF都是描述fMRI影像非常有用的特征。
原创不易,转载请注明出处
copyright © 意疏:https://blog.csdn.net/sinat_35907936/article/details/118264261。初学小白,如有错误,还望不吝指出。
任务态与静息态
任务态和静息态是大脑的两种状态,前者主要是指大脑在执行记忆、识别以及运动等具体任务时的状态,静息态则是指大脑不执行具体认知任务、保持安静、放松、清醒时的状态,是大脑所处的各种复杂状态中最基础和最本质的状态1。研究表明,在大脑消耗的全部能量中,静息态的能量消耗,要远远高于与任务相关的神经元代谢增加,如果只研究任务态,那我们获取的关于大脑的知识将是非常有限的2。所以,自1995年biswal教授及其同事3率先报告静息态fMRI具有生理意义后,越来越多的人进入了静息态的研究领域。
任务态fMRI(task-fMRI),就是在大脑执行具体任务时的fMRI影像,其基于很强烈的模型假设,即在特定实验任务刺激的情况下,相对于没有该实验任务刺激(基线baseline——往往是静息态)时,某些大脑区域的fMRI(BOLD)信号会发生显著变化(激活),且信号变化符合HRF函数。在采集task-fMRI数据之前,需要精细的实验设计——需要知道任务是什么,基线是什么,任务什么时候开始,持续多长时间,任务与基线交替几次等等,实验设计是task-fMRI的灵魂。如图12上面那幅图所示的就是一个睁眼闭眼任务的简单实验设计范式,睁眼是任务(这里不知道有木有给被试看什么东西,比如动画片什么的),闭眼是基线,它们开始的时间,持续的时间,交替次数都可以从图中看到。
task-fMRI之所以需要精细的实验设计,首先是因为它是模型驱动的,如果实验设计都很粗糙,做出来的结果可能也粗糙,其次就是在采集task-fMRI数据时,基线数据和任务数据是交替混在一起的,在分析task-fMRI数据时,我们需要准确的时间信息才能用基于模型(GLM,广义线性(回归)模型+HRF)的数据分析方法,分别得到每个体素的fMRI(BOLD)信号与任务信号(睁眼闭眼任务中为:0 1 0 1 0 1 0 1 0 1 0)和基线信号(睁眼闭眼任务中为:1 0 1 0 1 0 1 0 1)的相似程度 β 1 β 2 \beta_1 \beta_2 β1β