集合论(ZFC)之 自然数(Natural Number)

一、后继者(Successor)

        给定一个集合 a,该集合 a 的后继者(successor)为 a ⋃ {a},记,

succ( a ) = a + 1 = a ⋃ {a}

        在《集合论(ZFC)之 序数与良序同构(isomorphic)》 证明了,a ⋃ {a},为序数,且 

a ⋃ {a} = inf {b : b > a}

        由于,a ∈ a ⋃ {a},那么,a 也是序数。

二、极限序数(Limit Ordinal)     

        当 a 不是任意集合的后继者时,即 不存在 a = b + 1 = b ⋃ { b } 此时,亦称 a 为极限序数(Limit Ordinal),即非后继者,那么,

a = sup { b: b < a } =  ⋃ a

        此时只有,当 { b: b < a } 为空集时,才能满足上述等式,即 a = sup ∅ = ⋃ a

那么,a 也只能为空集,即 a = sup ∅ = ⋃ a =  ∅,同时,定义 0 = sup ∅ =  ∅。

        这里面,sup 代表 supremum,指的是集合的最小上界,即∃a∈X.( ∀x∈X.( x ≤ a) ) 。那么, { b: b < a } ,意思是小于a的元素的集合。对于序数来说,小于 < 意味着 属于∈。

三、自然数(Natural Number)

        那么自然数定义为,

        0 = sup ∅ =  ∅;

        1 = 0 + 1 = 0 ⋃ {0} = ∅ ⋃ {∅ }

        2 = 1 + 1 = 1 ⋃ {1} = ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }}

        3 = 2 + 1 = 2 ⋃ {2} = ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }}  ⋃ { ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }} }

        ...

        将最小非0的极限序数(least nonzero limit ordinal)记为 w,其定义为 w = sup { n: n < w },所有小于 w 的序数称为有限序数,或叫自然数(N)。即,极限序数 w 大于所有的自然数。

        另外,所有的序数,要不是零(Zero),要不是后继者(successor),要不就是非0极限序数(nonzero limit ordinal)。

        当一个集合X,存在一个一一对应的函数f,映射集合X到自然数中的某个数 n ∈ N,

即 f: X → n,n ∈ N

那么该集合X称为有限集(finite set),其集合元素的个数为n,记,|X| = n。

反之为无限集合(infinite set)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KeithTsui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值