一、后继者(Successor)
给定一个集合 a,该集合 a 的后继者(successor)为 a ⋃ {a},记,
succ( a ) = a + 1 = a ⋃ {a} 。
在《集合论(ZFC)之 序数与良序同构(isomorphic)》 证明了,a ⋃ {a},为序数,且
a ⋃ {a} = inf {b : b > a} 。
由于,a ∈ a ⋃ {a},那么,a 也是序数。
二、极限序数(Limit Ordinal)
当 a 不是任意集合的后继者时,即 不存在 a = b + 1 = b ⋃ { b }, 此时,亦称 a 为极限序数(Limit Ordinal),即非后继者,那么,
a = sup { b: b < a } = ⋃ a。
此时只有,当 { b: b < a } 为空集时,才能满足上述等式,即 a = sup ∅ = ⋃ a,
那么,a 也只能为空集,即 a = sup ∅ = ⋃ a = ∅,同时,定义 0 = sup ∅ = ∅。
这里面,sup 代表 supremum,指的是集合的最小上界,即∃a∈X.( ∀x∈X.( x ≤ a) ) 。那么, { b: b < a } ,意思是小于a的元素的集合。对于序数来说,小于 < 意味着 属于∈。
三、自然数(Natural Number)
那么自然数定义为,
0 = sup ∅ = ∅;
1 = 0 + 1 = 0 ⋃ {0} = ∅ ⋃ {∅ }
2 = 1 + 1 = 1 ⋃ {1} = ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }}
3 = 2 + 1 = 2 ⋃ {2} = ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }} ⋃ { ∅ ⋃ {∅ } ⋃ {∅ ⋃ {∅ }} }
...
将最小非0的极限序数(least nonzero limit ordinal)记为 w,其定义为 w = sup { n: n < w },所有小于 w 的序数称为有限序数,或叫自然数(N)。即,极限序数 w 大于所有的自然数。
另外,所有的序数,要不是零(Zero),要不是后继者(successor),要不就是非0极限序数(nonzero limit ordinal)。
当一个集合X,存在一个一一对应的函数f,映射集合X到自然数中的某个数 n ∈ N,
即 f: X → n,n ∈ N
那么该集合X称为有限集(finite set),其集合元素的个数为n,记,|X| = n。
反之为无限集合(infinite set)。