集合论(ZFC)之 幂集公理(Axiom of Power Set)注解

        集合论(ZFC)之 幂集公理(Axiom of Power Set)定义了给定一个集合X,存在一个集合Y为该集合X的幂集,记 Y = P(X),其包含了集合X的所有子集(Subset)。

        子集关系的定义为,如果集合U的所有元素,都是集合X的元素,那么集合U就是集合X的子集,记 U ⊂ X,有

∀z( z∈U → z∈ X)

        那么,集合X的幂集定义为,

∀X ∃Y ∀u ( u∈Y ↔ u⊂X )

即,Y = P(X) = { u: u⊂X } 

        如果,U ⊂ X,且 U != X,那么 集合U 是 集合X 的 真子集(Proper Set)。

 

        由此,可定义积操作(Product),其输出结果为积集(Product Set),也称卡迪尔积,有:

X × Y = { (x, y): x ∈ X ∧ y ∈ Y }

        即,集合X和Y的积集(Product Set)是集合X和Y里所有元素的有序对(Ordered Pair)。

        根据 划分图式公理 及 配对公理 来定义,有:

                X × Y  = { (x, y): x ∈ X ∧ y ∈ Y }        (注:令 φ(x, y) = x ∈ X ∧ y ∈ Y )

                = { (x, y) : φ(x, y) }         (注: 根据划分图式公理)

                = { u : ∃x ∃y ( u = (x, y) ∧ φ(x,y) ) }        (注:根据划分图式公理)

                = { u : ∃x ∃y ( u = { {x}, {x, y} } ∧ φ(x,y) ) }        (注:根据有序对的定义)

        可见,积集 X × Y 的元素的形态为 { {x}, {x, y} },即 P(P( X ⋃ Y )) 的子集,记,

X × Y ⊂ P(P( X ⋃ Y ))

        简略证明过程如下:

                        X ⋃ Y = { xᵢ, yⱼ, ... }        (注:联合公理,xᵢ,yⱼ 为其元素形态 )

                        P(X ⋃ Y) = { {xᵢᵇ}, {yⱼᵇ}, {xᵢᵇ, yⱼᵇ}, ... }    (注:幂集公理, ᵇ 表示是否选择,0 或 1)

                        P(P(X ⋃ Y)) = { {xᵢᵇ}ᵇ, {xᵢᵇ, yⱼᵇ}ᵇ, ... }     (注:幂集公理, ᵇ 表示是否选择,0 或 1)

        至此,可以看到 P(P(X ⋃ Y)) 具备了X × Y 的元素的形态,然后把所有形态扩展成具体的元素,就有 X × Y ⊂ P(P( X ⋃ Y )) 了。

        把积集拓展到多个集合的积运算,有

        X₁ × ... × Xₙ  = (X₁ × ... × Xₙ₋₁) × Xₙ = { (x₁,...,xₙ) : x₁ ∈ X₁ ∧ ... ∧ xₙ ∈ Xₙ }

        如果,X₁ = ... = Xₙ,有 Xⁿ  =  X₁ × ... × Xₙ .

 

关系的定义

        从而,定义 多元关系 (n-arg relation) R,R ⊂  Xⁿ ,那么,有

(x₁,...,xₙ) ∈ R

        即,多元关系 (n-arg relation) R 为 Xⁿ 的子集,其元素形态为 (x₁,...,xₙ) ,xᵢ ∈ X 。

        当 n = 2,多元关系 (n-arg relation) R 变成 二元关系(binary relation),即 (x, y) ∈ R。此时,定义 关系R的定义域(Domain):

Dom(R) =  {u: ∃v(u, v) ∈ R}  且  Dom(R) ⊂  ⋃ ⋃ R

与之相对的域(Range):

Ran(R) =  {v: ∃u(u, v) ∈ R}  且  Ran(R) ⊂  ⋃ ⋃ R

另,定义 关系R的全域(Field):

Field(R) = Dom(R) ⋃ Ran(R)

其中的证明,可参照上述的元素形态分析法,代入对应的定义,得以论证,这里就不细说了。

 

函数的定义

        在关系R的基础上,将其约束成,对于任意一个定义域的元素,有且只有一个值域的元素与之对应。那么,约束后R的子集就是其函数 f ,记 (x, y) ∈ f,f ⊂ R,且

(x, y) ∈ f ∧ (x, z) ∈ f → y = z

        也记为,y = f(x),其中 Dom(f)  ⊂ X, Ran(f) ⊂ Y。

当 Dom(f)  = X,称函数 f 定义在集合 X上,即对于集合X中的任一元素 a,皆有 f(a)与之对应。记 

f: X  → Y

        所有的从集合X指向集合Y的函数的集合,记为 X → Y,也记 Yˣ,有 

Yˣ ⊂ P( X × Y )

此证明同上述逻辑相似,元素形态分析法,加上定义代入,可得其证明。

 

小结

        基于上述的描述,通过幂集公理定义集合的幂集后,定义了两个集合的积 是 集合,即积集,并从而派生出,关系、函数的概念。由此,可见,通过ZFC定义的公理,从而派生出一系列的概念与定义,形成数学研究的基础概念。这就是 ZFC 成为数学基础(The foundation of Mathematics)的一个体现。  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值