线性代数学习笔记(五):矩阵的理解之— 线性代数核心定理

线性代数学习笔记(五):

矩阵的理解之— 线性代数核心定理

一、矩阵的秩与行列式

详见:线性代数学习笔记(三):矩阵的理解之— 矩阵的秩与行列式

二、矩阵的特征值与特征向量

详见:线性代数学习笔记(四):矩阵的理解之— 矩阵的特征值与特征向量

三、线性代数核心定理

以上所有线性代数定义的融合与相互联系:

以下几点说法完全等价:
(1): M M M可逆(存在矩阵 M − 1 , M − 1 M = 1 M^{-1},M^{-1}M=1 M1M1M=1
(2): d e t ( M ) ≠ 0 det(M)≠0 det(M)=0
(3): M M M满秩,r(M)=n
(4):任何 λ i ≠ 0 \lambda_i≠0 λi=0
(5): k e r n e l ( M ) = 0 kernel(M)=0 kernel(M)=0

  • 几点解释:
    (1)是说:
    M M M可逆,变换后的线性空间可以变回原空间,空间的维度没有改变,线性变换 M M M没有对空间做降维打击。
    (2)是说:
    线性变换 M M M没有做降维的变换,微元体积之比不为0。
    (3)是说:
    M M M满秩,各行秩/列秩线性无关,r(M)=n。
    (4)是说:
    d e t ( M ) = λ 1 ∗ λ 2 ∗ . . . ∗ λ n det(M)=\lambda_1*\lambda_2*...*\lambda_n det(M)=λ1λ2...λn,而 d e t ( M ) ≠ 0 det(M)≠0 det(M)=0,所以任何 λ i ≠ 0 \lambda_i≠0 λi=0
    (5)是说:
    核的概念 M α ⃗ = 0 ⃗ M\vec \alpha=\vec 0 Mα =0 ,则 α ⃗ ∈ k e r ( M ) \vec \alpha∈ker(M) α ker(M)
    核空间的概念:核向量构成的空间。
    核空间是原空间线性变换后的一个子空间。
    在这里插入图片描述

四、深入理解矩阵

矩阵 M M M首先是n×n个数的有机存在,从不同的侧面得到 M M M的不同理解方式:

(1)线性变换:
M M M作用在一个列向量上,表示对列向量做线性变换。
(2) 过渡矩阵:
M M M可用来描述线性空间两组基之间的变换关系,也可以是两组基之间系数分量之间的关系。
(3)
M M M看做许多列向量的排列,可以得到其极大线性无关组,引出秩的概念。
(4)行列式
借助逆序数的概念,得到行列式 d e t ( M ) det(M) det(M)
(5)特征值和特征向量:
M M M作用在一个向量上等于一个数乘这个向量,得到特征值和特征向量的概念。

五、二次型与合同

5.1. 二次型与矩阵

用矩阵可以将所以二次型的不同表达方式认同起来。
在这里插入图片描述
在这里插入图片描述

5.2. 合同

在这里插入图片描述

五、线性空间的理解

详见:线性代数学习笔记(一):线性空间的理解

六、线性变换的理解

详见:线性代数学习笔记(二):线性变换的理解

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值