[CDC 2018] 理解压缩对抗隐私

本文提出了一种名为压缩对抗隐私(CAP)的方法,该方法融合了压缩感知和对抗性学习,旨在增强数据隐私保护并抵御数据攻击。CAP通过压缩感知减少数据传输,同时利用对抗性学习提升模型的隐私安全性。文章讨论了在不同攻击模型下(线性和非线性)的数据发布策略,并包含了理论证明和相关性质分析。
摘要由CSDN通过智能技术生成

摘要

本文提出了一种新的隐私保护方法,称为 压缩对抗隐私(Compressive Adversarial Privacy,CAP),它结合了 压缩感知对抗性学习的优点,可以提高隐私保护性能并抵抗针对数据隐私攻击。CAP方法使用压缩感知来减少数据传输和存储,使用对抗性学习来提高模型的隐私保护性能。

一、引言

在互联网时代,隐私保护已经成为一个非常重要的问题。传统的隐私保护方法(如数据加密、脱敏等)已经无法满足现代大数据环境下的需求。因此,隐私保护领域的研究者们开始探索新的方法来保护用户的隐私。本文提出了一种新的隐私保护方法,它结合了压缩感知和对抗性学习的优点,可以提高隐私保护性能并抵抗针对数据隐私攻击。该方法在保护隐私的同时,也能保证数据的有效利用和高效传输。

二、隐私保护发布

压缩对抗隐私被视为数据持有者和恶意攻击者之间的游戏

凸优化来表征最佳数据发布机制,假设数据持有者和攻击者只能使用线性变换来修改数据。

三、压缩的对抗性的隐私

一:当攻击者采用线性模型时的线性压缩

二:当攻击者使用神经网络时的非线性压缩

六、附录

A、线性问题转换

B、恢复线性操作

 

C、矩阵的正半定矩阵性质的证明

D、重参数化的问题的凸性

E、理论1的证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值