本章思维导图
(待更新)
本章内容概要
图像彩色空间互转在图像处理中应用非常广泛,而且很多算法只对灰度图有效;另外,相比RGB,其他颜色空间(比如HSV、HSI)更具可分离性和可操作性,所以很多图像算法需要将图像从RGB转为其他颜色空间,所以图像彩色互转是十分重要和关键的。
算法理论介绍与资料推荐
1、RGB与灰度图互转
RGB(红绿蓝)是依据人眼识别的颜色定义出的空间,可表示大部分颜色。但在科学研究一般不采用RGB颜色空间,因为它的细节难以进行数字化的调整。它将色调,亮度,饱和度三个量放在一起表示,很难分开。它是最通用的面向硬件的彩色模型。该模型用于彩色监视器和一大类彩色视频摄像。
RGB颜色空间 基于颜色的加法混色原理,从黑色不断叠加Red,Green,Blue的颜色,最终可以得到白色,如图:
将R、G、B三个通道作为笛卡尔坐标系中的X、Y、Z轴,就得到了一种对于颜色的空间描述,如图:
对于彩色图转灰度图,有一个很著名的心理学公式:
G r a y = R ∗ 0.299 + G ∗ 0.587 + B ∗ 0.114 Gray = R * 0.299 + G * 0.587 + B * 0.114 Gray=R∗0.299+G∗0.587+B∗0.114
2、RGB与HSV互转
HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法。HSV即色相(Hue)、饱和度(Saturation)、明度(Value),又称HSB(B即Brightness)。色相是色彩的基本属性,就是平常说的颜色的名称,如红色、黄色等。饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值。明度(V),取0-max(计算机中HSV取值范围和存储的长度有关)。HSV颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处V=max,S=0,H无定义,代表白色。
RGB颜色空间中,三种颜色分量的取值与所生成的颜色之间的联系并不直观。而HSV颜色空间,更类似于人类感觉颜色的方式,封装了关于颜色的信息:“这是什么颜色?深浅如何?明暗如何?
HSV模型
这个模型就是按色彩、深浅、明暗来描述的。
- H是色彩;
- S是深浅, S = 0时,只有灰度;
- V是明暗,表示色彩的明亮程度,但与光强无直接联系。
应用:可以用于偏光矫正、去除阴影、图像分割等
1. RGB2HSV
或者:
2. HSV2RGB
基于OpenCV的实现
C++
void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
- src: 输入图像
- dst: 输出图像
- code: 颜色空间转换标识符
- OpenCV2的CV_前缀宏命名规范被OpenCV3中的COLOR_式的宏命名前缀取代
- 注意RGB色彩空间默认通道顺序为BGR
- 具体可以参考: enum cv::ColorConversionCode部分
- dstCn: 目标图像的通道数,该参数为0时,目标图像根据源图像的通道数和具体操作自动决定
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
// main
int main( int argc, char** argv )
{
// Load image
cv::Mat srcImage = cv::imread("1.jpg"), dstImage;
// RGB2GHSV
cv::cvtColor(srcImage, dstImage, cv::COLOR_BGR2hHSV);
imshow("Lab Space", dstImage);
//RGB2GRAY
cv::cvtColor(srcImage, dstImage, cv::COLOR_BGR2GRAY);
imshow("Gray Scale", dstImage);
cv::waitKey();
return 0;
}
代码实践:
- 1.RGB_to_GRAY
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
cv::Mat RGB2GRAY(cv::Mat src, bool accelerate=false){
CV_Assert(src.channels()==3);
cv::Mat dst = cv::Mat::zeros(src.size(), CV_8UC1);
cv::Vec3b rgb;
int r = src.rows;
int c = src.cols;
for (int i = 0; i < r; ++i){
for (int j = 0; j < c; ++j){
rgb = src.at<cv::Vec3b>(i, j);
uchar B = rgb[0]; uchar G = rgb[1]; uchar R = rgb[2];
if (accelerate = false){
dst.at<uchar>(i, j) = R*0.299 + G*0.587 + B*0.114; //原式
}
else{
dst.at<uchar>(i, j) = (R * 4898 + G * 9618 + B * 1868) >> 14; //优化
}
}
}
return dst;
}
int main(){
cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\lena.jpg");
if (src.empty()){
return -1;
}
cv::Mat dst,dst1;
//opencv自带
double t2 = (double)cv::getTickCount(); //测时间
cv::cvtColor(src, dst1, CV_RGB2GRAY);
t2 = (double)cv::getTickCount() - t2;
double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
std::cout << "Opencv_rgb2gray=" << time2 << " ms. " << std::endl << std::endl;
//RGB2GRAY
double t1 = (double)cv::getTickCount(); //测时间
dst = RGB2GRAY(src, true);
t1 = (double)cv::getTickCount() - t1;
double time1 = (t1 *1000.) / ((double)cv::getTickFrequency());
std::cout << "My_rgb2gray=" << time1 << " ms. " << std::endl << std::endl;
cv::namedWindow("src", CV_WINDOW_NORMAL);
imshow("src", src);
cv::namedWindow("My_rgb2gray", CV_WINDOW_NORMAL);
imshow("My_rgb2gray", dst);
cv::namedWindow("Opencv_rgb2gray", CV_WINDOW_NORMAL);
imshow("Opencv_rgb2gray", dst1);
cv::waitKey(0);
return 0;
}
- 2.RGB to HSV/HSV to RGB
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
Mat RGB2HSV(Mat src) {
int row = src.rows;
int col = src.cols;
Mat dst(row, col, CV_32FC3);
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
float b = src.at<Vec3b>(i, j)[0] / 255.0;
float g = src.at<Vec3b>(i, j)[1] / 255.0;
float r = src.at<Vec3b>(i, j)[2] / 255.0;
float minn = min(r, min(g, b));
float maxx = max(r, max(g, b));
dst.at<Vec3f>(i, j)[2] = maxx; //V
float delta = maxx - minn;
float h, s;
if (maxx != 0) {
s = delta / maxx;
}
else {
s = 0;
}
if (r == maxx) {
h = (g - b) / delta;
}
else if (g == maxx) {
h = 2 + (b - r) / delta;
}
else if (b==maxx) {
h = 4 + (r - g) / delta;
}
else{
h = 0;
}
h *= 60;
if (h < 0)
h += 360;
dst.at<Vec3f>(i, j)[0] = h;
dst.at<Vec3f>(i, j)[1] = s;
}
}
return dst;
}
Mat HSV2RGB(Mat src) {
int row = src.rows;
int col = src.cols;
Mat dst(row, col, CV_8UC3);
float r, g, b, h, s, v;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
h = src.at<Vec3f>(i, j)[0];
s = src.at<Vec3f>(i, j)[1];
v = src.at<Vec3f>(i, j)[2];
if (s == 0) {
r = g = b = v;
}
else {
h /= 60;
int offset = floor(h);
float f = h - offset;
float p = v * (1 - s);
float q = v * (1 - s * f);
float t = v * (1 - s * (1 - f));
switch (offset)
{
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
default:
break;
}
}
dst.at<Vec3b>(i, j)[0] = int(b * 255);
dst.at<Vec3b>(i, j)[1] = int(g * 255);
dst.at<Vec3b>(i, j)[2] = int(r * 255);
}
}
return dst;
}
int main(){
cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\lena.JPG");
if (src.empty()){
return -1;
}
cv::Mat dst, dst1, dst2;
opencv自带/
cv::cvtColor(src, dst1, CV_RGB2HSV); //RGB2HSV
//RGB2HSV//
dst = RGB2HSV(src); //RGB2HSV
dst2 = HSV2RGB(dst); //HSV2BGR
cv::namedWindow("src", CV_WINDOW_NORMAL);
imshow("src", src);
cv::namedWindow("My_RGB2HSV", CV_WINDOW_NORMAL);
imshow("My_RGB2HSV", dst);
cv::namedWindow("My_HSV2RGB", CV_WINDOW_NORMAL);
imshow("My_HSV2RGB", dst2);
cv::namedWindow("Opencv_RGB2HSV", CV_WINDOW_NORMAL);
imshow("Opencv_RGB2HSV", dst1);
cv::waitKey(0);
return 0;
}
效果
参考:
1、OpenCV:第3章 彩色空间互转
2、OpenCV教程