傅里叶之级数的物理含义

1,傅里叶级数的三角函数表示形式

周期函数的傅里叶级数表达式如下:

f(x)=\frac{a_0}{2}+\sum_{k=1}^{k=\infty }(a_kcoskx+b_ksinkx)

假定

c_k*cos(kx +\varphi_k )=c_k*(coskx*cos\varphi_k-sinkx*sin\varphi_k)=coskx*a_k+sinkx*b_k

那么可以得到

a_k=c_k*cos\varphi _kb_k=-c_k*sin\varphi _kc_k=\sqrt{a_k^2+b_k^2}tan\varphi _k=-\frac{b_k}{a_k}

所以

f(x)=\frac{a_0}{2}+\sum_{k=1}^{k=\infty }(\sqrt{a_k^2+b_k^2}*cos(kx+\varphi _k))

其中\frac{a_0}{2}称之为直流分量,c_k称之为交流分量的幅度谱,\varphi_k称之为交流分量的相位谱。


2,傅里叶级数的指数表示形式

根据欧拉公式:e^{ix}=cosx+i*sinx,可以知道:

coskx=\frac{1}{2}(e^{ikx}+e^{-ikx})

sinkx=\frac{1}{2i}(e^{ikx}-e^{-ikx})

显然可以得到:

\fn_cm a_kcoskx+b_ksinkx=\frac{a_k}{2}(e^{ikx}+e^{-ikx})+\frac{b_k}{2i}(e^{ikx}-e^{-ikx})

\fn_cm a_kcoskx+b_ksinkx=\frac{1}{2}(a_k-b_ki)e^{ikx}+\frac{1}{2}(a_k+b_ki)e^{-ikx}

因为a_k是偶函数,b_k是奇函数,所以

\sum_{k=1}^{\infty}(a_k+b_ki)e^{-ikx}=\sum_{k=-1}^{-\infty}(a_{k}-b_{k}i)e^{ikx}

所以

f(x)=\frac{a_0}{2}+\frac{1}{2}\sum_{k=1}^{\infty}(a_k-b_ki)e^{ikx}+\frac{1}{2}\sum_{k=1}^{\infty}(a_{k}+b_{k}i)e^{-ikx}

所以

f(x)=\frac{a_0}{2}+\frac{1}{2}\sum_{k=1}^{+\infty}(a_k-b_ki)e^{ikx}+\frac{1}{2}\sum_{k=-1}^{-\infty}(a_{k}-b_{k}i)e^{ikx}

又因为

\frac{a_0}{2}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx=\frac{1}{2}(a_0-b_0i)e^{i0x}

所以

f(x)=\frac{1}{2}\sum_{k=-\infty}^{+\infty}(a_k-b_ki)e^{ikx}

F_k=\frac{1}{2}(a_k-b_ki) =\frac{1}{2}\sqrt{a_k^2+b_k^2} e^{i\varphi_k}

tan\varphi_k=-\frac{b_k}{a_k}  (k>=0时)

,tan\varphi_k=\frac{b_k}{a_k}      (k<=-1时)

f(x)=\sum_{k=-\infty}^{+\infty}\frac{1}{2}(\sqrt{a_k^2+ b_k^2})e^{i\varphi_k}e^{ikx}=\sum_{k=-\infty}^{+\infty}\frac{1}{2}(\sqrt{a_k^2+b_k^2})e^{i(\varphi_k+kx)}


其中r_k称之为复幅度谱,因为分为正负两部分,所以实际的幅度谱应该乘以2。\varphi_k称之为复相位谱,正负两部分相差180度,实际取正半轴的就可以了。


F_k=\frac{1}{2}(a_k-b_ki)=\frac{1}{2\pi}(\int_{-\pi}^{\pi}f(x)coskxdx -\int_{-\pi}^{\pi}f(x)*i*sinkxdx)

F_k=\frac{1}{2\pi}(\int_{-\pi}^{\pi}f(x)(coskx-i*sinkx)dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ikx}dx

f(x)=F_ke^{ikx}

在信号处理中,基本上是这样:

T_0=\frac{2\pi}{\omega_0}

F(k\omega_0)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(\omega_0t)e^{-jk\omega_0t}d\omega_0t=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}}f(t)e^{-jk\omega_0t}dt

f(t)=\sum_{k=-\infty}^{\infty}F(k\omega_0)e^{jk\omega_0t}


总结:时域的周期T_0,对应于频域的离散\Omega _0

x(t)=\sum_{k=-\infty}^{\infty}X(k\Omega_0)e^{jk\Omega_0t}

X(k\Omega_0)=\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}x(t)e^{-jk\Omega_0t}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值