论文阅读笔记——【FakePolisher】FakePolisher:Making DeepFakes More Detection-Evasive by Shallow Reconstruction

FakePolisher是一种利用浅层重建技术减少深度伪造图像中人工痕迹的方法,以提高其逃避检测的能力。研究指出,基于GAN的图像生成方法在上采样过程中留下的伪影模式可被现有检测方法利用。通过学习线性字典对DeepFake图像进行浅重构,可以有效地去除这些伪影,降低现有检测方法的准确性。实验表明,该方法对多种DeepFake检测技术有欺骗效果。
摘要由CSDN通过智能技术生成

FakePolisher:Making DeepFakes More Detection-Evasive by Shallow Reconstruction

  • 来源:ACM MM2020
  • 作者:Yihao Huang1, Felix Juefei-Xu2, Run Wang3,∗, Qing Guo3, Lei Ma4, Xiaofei Xie3, Jianwen Li1,Weikai Miao1, Yang Liu3,5, Geguang Pu1,∗
  • 单位:1East China Normal University, China;2Alibaba Group, USA;3Nanyang Technological University, Singapore;4Kyushu University, Japan;5Zhejiang University, China
  • 邮箱:Yihao Huang’s email: huangyihao22@gmail.com ;Corresponding authors. E-mail: runwang1991@gmail.com, ggpu@sei.ecnu.edu.cn.
  • 论文原地址:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值