多智能体强化学习算法【一】【MAPPO、MADDPG、QMIX】

本文介绍了多智能体强化学习(MARL)中的MAPPO算法,对比了它与off-policy算法如MADDPG、QMix在数据样本效率和算法运行效率上的优势。研究发现,在有限计算资源下,MAPPO表现出高运行效率,且在多个环境中(MPE、StarCraftII、Hanabi)的实验结果显示,MAPPO在性能和效率上与SOTA算法相当。此外,文章还提供了一套优化后的MARL算法源码,并给出了提升MAPPO性能的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关文章:

 

常见多智能体强化学习仿真环境介绍【一】{推荐收藏,真的牛}

多智能体强化学习算法【一】【MAPPO、MADDPG、QMIX】

多智能体强化学习算法【二】【MADDPG、QMIX、MAPPO】

多智能体强化学习算法【三】【QMIX、MADDPG、MAPPO】

 

     近些年,多智能体强化学习(Multi-Agent Reinforcement Learning,MARL)取得了突破性进展,例如 DeepMind 开发的 AlphaStar 在星际争霸 II 中打败了职业星际玩家,超过了 99.8% 的人类玩家;OpenAI Five 在 DOTA2 中多次击败世界冠军队伍,是首个在电子竞技比赛中击败冠军的人工智能系

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值