【离散数学】图论

本文深入探讨了图论的基础知识,包括无向图与有向图的握手定理,路径与回路的定义,以及图的矩阵表示。接着讨论了图的连通性,如连通图、强连通图和弱连通图。文章还介绍了哈密尔顿图的充分必要条件,二部图的概念及其性质,并提到了欧拉图的特征。最后,简要触及了二叉树及其前缀码的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、图

1、图的基本概念

握手定理:无向图中,所有节点度数之和为边数的二倍

有向图中,所有节点入度之和等于出度之和等于边数

推论:任何图都有偶数个奇结点

各种图(V,E) = (n,m)

零图

只有孤立结点的图

平凡图

阶零图

k度正则图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值