1、解决的问题:
这是一种解决凸优化问题的简单方法,通过将待求解问题进行分解,逐一求解单个优化问题,简化求解难度。
解决问题类型:
2、推导:
将上述约束优化问题通过对偶变量的耦合构成拉格朗日函数:
为了是函数更凸,加入惩罚项形成增广拉格朗日函数(ALM):
接下来就是通过逐一固定变量更新其他变量最终完成优化问题的求解:
step1:
step2:
step3:
不断重复,直至不变(谷底)。
1、解决的问题:
这是一种解决凸优化问题的简单方法,通过将待求解问题进行分解,逐一求解单个优化问题,简化求解难度。
解决问题类型:
2、推导:
将上述约束优化问题通过对偶变量的耦合构成拉格朗日函数:
为了是函数更凸,加入惩罚项形成增广拉格朗日函数(ALM):
接下来就是通过逐一固定变量更新其他变量最终完成优化问题的求解:
step1:
step2:
step3:
不断重复,直至不变(谷底)。