- 博客(11)
- 收藏
- 关注
原创 最优化学习笔记4(外点罚函数法,内点罚函数法)
外点法和内点法均采用序列无约束极小化技巧,方法简单,使用方便,并能够用来求解导数不存在的问题,因此这种算法对实际工作者确有吸引力,而且已经得到较广泛的应用。但是,上述的罚函数法存在固有的缺点,随着罚因子趋向于极限,罚函数的Hesse矩阵的条件数无限增大,因而越来越变得病态,给无约束极小化带来很大困难。GitHub - QiangLong2017/Optimization-Theory-and-Algorithm: 用于存放《最优化理论与算法》代码与课件。
2024-05-06 16:09:17 1666
原创 最优化学习笔记3(ZoutendijK可行方向法、Rosen投影梯度法、Frank-Wolfe方法)
以上三种方法均适用与约束情况下的非线性最优化问题,他们的核心就是寻找可行方向,第一个方法时将其转换为线性优化问题,第二个是利用投影方向,第三个是将目标函数线性化(泰勒),转换为线性规划问题。他们三个办法都用到了目标函数的梯度。
2024-04-22 17:14:01 2686 1
原创 最优化学习笔记2(交替方向法、单纯形法)
之前介绍的牛顿法、拟牛顿法、最速下降法、共轭方向法都需要知道最优化目标函数的梯度,但是在现实情况下,目标函数的梯度不方便求解甚至目标函数本身未知,此时再用无约束非线性规划的导数方法不现实,于是就有了无约束非线性规划的直接方法。
2024-04-19 16:49:31 784 1
原创 最优化学习笔记(最速下降法、牛顿法、共轭梯度法、拟牛顿法)
最速梯度下降法是比较常用的算法,前期收敛比较快,后面可能会陷入无限循环,代码如下: 假设一个函数的表达式已知: 则梯度矩阵为: 计算一维搜索的函数,让函数在某个方向前进:最速下降法整体流程:最后是测试函数:2.牛顿法 下面是牛顿法的代码,和上面大差不差,就是需要在单独写一个计算海森矩阵的函数,这也是牛顿法计算量大的地方3.共轭梯度法 在共轭梯度法中,每一次迭代都会在一个共轭方向上进行搜索,这个共轭方向是基于前一步的搜索方向计算得到的。在
2024-04-19 11:49:30 535 1
原创 linux安装显卡驱动
最近刚刚接手实验室的新电脑,由于我对linux系统操作不是很熟,一直搞不清楚电脑配置。今天鼓捣了一下,发现在设置页面能看到显卡信息,但是不知道是具体什么型号,于是就去学习了以下。
2023-09-08 20:18:35 211 2
原创 ROS1 tf2工具使用
在明确了不同坐标系之间的的相对关系,就可以实现任何坐标点在不同坐标系之间的转换,但是该计算实现是较为常用的,且算法也有点复杂,因此在 ROS 中直接封装了相关的模块: 坐标变换(TF)。在ROS中坐标变换最初对应的是tf,不过在 hydro 版本开始, tf 被弃用,迁移到 tf2,后者更为简洁高效,tf2对应的常用功能包有:tf2_geometry_msgs:可以将ROS消息转换成tf2消息。tf2: 封装了坐标变换的常用消息。tf2_ros:为tf2提供了roscpp和rospy绑定,封装
2023-09-02 20:34:42 151
原创 古月居ROS2学习笔记——launch
每当我们运行一个ROS节点,都需要打开一个新的终端运行一个命令。机器人系统中节点很多,每次都这样启动好麻烦呀。有没有一种方式可以一次性启动所有节点呢?答案当然是肯定的,那就是Launch启动文件,它是ROS系统中多节点启动与配置的一种脚本。Launch文件是基于Python描述的核心目的是启动节点,在命令行中输入的各种参数,在launch文件中也有很多的代码模板,还可以是使用Python原有的编程功能。
2023-08-12 22:35:40 402 1
原创 ROS2中的发布/订阅模型(古月居ros2学习笔记)
常用的usb相机驱动一般都是通用的,ROS中也集成了usb相机的标准驱动,我们只需要通过这样一行指令,就可以安装好,无论你用什么样的相机,只要符合usb接口协议,就可以直接使用ROS中的相机驱动节点,发布标准的图像话题了。话题数据传输的特性是从一个节点到另外一个节点,发送数据的对象称之为发布者,接收数据的对象称之为订阅者,每一个话题都需要有一个名字,传输的数据也需要有固定的数据类型。这样,我们的代码又得到了进一步精简,刚才自己写的图像发布节点换成了这样一句指令,视觉识别节点不需要做任何变化。
2023-08-07 11:12:17 1337
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人