集成学习 随机森林

在这里插入图片描述
在这里插入图片描述

import numpy as np
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier,RandomForestClassifier


X,y=datasets.make_moons(n_samples=500,noise=0.3,random_state=666)


# train_X,test_X,train_y,test_y = train_test_split(X,y,test_size=0.2,random_state=666)

rf_clf=RandomForestClassifier(n_estimators=500,random_state=666,oob_score=True,n_jobs=-1)

rf_clf.fit(X,y)
print(rf_clf.oob_score_)
# print(dt_reg.score(train_X, train_y))



在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值