这是我的第240篇原创文章。
一、引言
校准曲线绘制的基本步骤如下:
1. 首先根据预测模型输出目标事件的预测概率;
2. 根据预测概率从小到大进行排序,并按照等分位点划分成N组;
3. 分别计算各组的实际事件发生率,以及预测概率的平均值
4. 根据各组的预测概率以及实际事件发生率绘制校准曲线
如果模型预测发生率与实际发生率完全一致,模型既不会高估结局风险,也不会低估结局风险,那么根据上述步骤绘制的线会是一条Y=X的标准曲线。
二、实现过程
2.1 校准曲线绘制函数
def calibration_plot(true ,pred ,n):
"""
参数说明:
true: 实际标签值
pred: 模型输出的预测概率
n: 分组数目 (校准区间中有几个点)
先加工绘图需要的数据形式:df_cal_trans
然后绘图,可以选择是否带误差棒
"""
df_cal = pd.DataFrame({'y_true' :true ,'y_pred' :pred}) # 现将实际值和预测值拼接成一个dataframe
df_cal = df_cal.sort_values(by='y_pred') ## 根据预测概率值进行排序
df_cal['group'], cut_bin = pd.qcut(df_cal['y_pred'] ,q=n ,retbins=True ,labels = list(range(1 , n +1))) ## 将数据进行分箱
output_list = list()
for i in range(1 , n +1):
true_pos_rate = 1 - df_cal.loc[df_cal['group' ]==i ,'y_true'].value_counts(1)[0]
y_pred_mean = df_cal.loc[df_cal['group' ]==i ,'y_pred'].mean()
y_pred_sd = df_cal.loc[df_cal['group' ]==i ,'y_pred'].std()
output = {'group' :i ,'true_pos_rate' :true_pos_rate ,'y_pred_mean' :y_pred_mean ,'y_pred_sd' :y_pred_sd}
output_list.append(output)
df_cal_trans = pd.DataFrame(output_list)
calibration_slop = round(scipy.stats.linregress(df_cal_trans['y_pred_mean'] ,df_cal_trans['true_pos_rate']).slope
,3)
plt.figure(figsize=(6 ,4))
plt.rcParams['axes.spines.right'] = False # 不绘制右边的框线
plt.rcParams['axes.spines.top'] = False # 不绘制上方的框线
line = plt.errorbar(df_cal_trans['y_pred_mean'] ,df_cal_trans['true_pos_rate'],
# yerr=df_cal_trans['y_pred_sd'],
fmt='--o', # 数据点标记式样和数据点标记的连线式样
ecolor="#00688B", # 误差棒的颜色
elinewidth=0.8, # 误差棒线条粗细
ms=4, # 数据点大小
mfc = "#00688B", # 数据点颜色
capthick = 1, # 误差棒边界横线的厚度
capsize = 2 # 误差棒边界横线的大小
)
limits = round(max(df_cal_trans['true_pos_rate'].max() ,df_cal_trans['y_pred_mean'].max()) + 0.02 ,3)
plt.plot([0 ,limits] ,[0 ,limits] ,"--" ,lw=1 ,color="grey")
plt.xlim(0 ,limits)
plt.ylim(0 ,limits)
plt.xlabel('Predicted event probability' ,fontsize=10)
plt.ylabel('Observed event probability' ,fontsize=10)
# plt.legend(handles=[line],labels=['HL P-value: > 0.05'], loc='best')
plt.legend(handles=[line] ,labels=['Calibration slope: {}'.format(calibration_slop)], loc='best') # 'lower right'
plt.grid(axis="y") # 设置横向网格线
plt.show()
# return df_cal_trans
2.2 案例应用
# 准备数据
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
# 提取目标变量和特征变量
target = 'target'
features = df.columns.drop(target)
print(data["target"].value_counts()) # 顺便查看一下样本是否平衡
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[[target]], test_size=0.2, random_state=0)
# 归一化
mm1 = MinMaxScaler() # 特征进行归一化
X_train_m = mm1.fit_transform(X_train)
mm2 = MinMaxScaler() # 标签进行归一化
y_train_m = mm2.fit_transform(y_train)
# 模型的构建与训练
model = LogisticRegression()
model.fit(X_train_m, y_train_m)
# 模型推理与评价
# 对测试集特征进行相同规则mm1的归一化处理,然后输入到模型进行预测
X_test_m = mm1.transform(X_test) #注意fit_transform() 和 transform()的区别
y_pred_m = model.predict(X_test_m) #利用输入特征input1和input2测试模型
y_scores = model.predict_proba(X_test_m)
y_pred = mm2.inverse_transform(np.reshape(y_pred_m, (-1, 1)))
calibration_plot(y_test[target], list(y_scores[:, 1]), 3)
三、结果
作者简介:
读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。