【Python机器学习系列】一文教你建立随机森林模型预测房价(案例+源码)

这是我的第282篇原创文章。

一、引言

对于表格数据,一套完整的机器学习建模流程如下:

图片

       针对不同的数据集,有些步骤不适用,其中橘红色框为必要步骤,欢迎大家关注翻看我之前的一些相关文章。前面我介绍了机器学习模型的二分类任务,接下来做一个机器学习模型的回归任务系列,由于本系列案例数据质量较高,有些步骤跳过了,跳过的步骤将单独出文章总结!在Python中,可以使用Scikit-learn库来构建随机森林(RF)回归模型进行预测,本文以预测房价为例,对这个过程做一个简要解读。

二、实现过程

2.1 读取数据

filename = 'data.csv'
dataset = pd.read_csv(filename, names=names, delim_whitespace=True)
df = pd.DataFrame(dataset)

df:

图片

2.2 数据集划分

features = names[:-1]
target = ['MEDV']
#  划分数据集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

2.3 数据归一化

# 无需该步骤

2.4 建模预测

model = GradientBoostingRegressor(random_state=0).fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

2.5 结果可视化

# 训练集预测值与真实值的对比
plt.plot(list(range(0,len(X_train))),y_train,marker='o')
plt.plot(list(range(0,len(X_train))),y_train_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('训练集预测值与真实值的对比')
plt.show()

结果:

图片

# 验证集预测值与真实值的对比
plt.plot(list(range(0,len(X_test))),y_test,marker='o')
plt.plot(list(range(0,len(X_test))),y_test_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('验证集预测值与真实值的对比')
plt.show()

结果:

图片

2.6 评价指标

# 评价指标
trainScore1 = math.sqrt(mean_squared_error(y_train, y_train_pred))
print('Train Score: %.2f RMSE' % (trainScore1))
testScore1 = math.sqrt(mean_squared_error(y_test, y_test_pred))
print('Test Score: %.2f RMSE' % (testScore1))

trainScore2 = mean_absolute_error(y_train, y_train_pred)
print('Train Score: %.2f MAE' % (trainScore2))
testScore2 = mean_absolute_error(y_test, y_test_pred)
print('Test Score: %.2f MAE' % (testScore2))

trainScore3 = r2_score(y_train, y_train_pred)
print('Train Score: %.2f R2' % (trainScore3))
testScore3 = r2_score(y_test, y_test_pred)
print('Test Score: %.2f R2' % (testScore3))

trainScore4 = mean_absolute_percentage_error(y_train, y_train_pred)
print('Train Score: %.2f MAPE' % (trainScore4))
testScore4 = mean_absolute_percentage_error(y_test, y_test_pred)
print('Test Score: %.2f MAPE' % (testScore4))

结果打印:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

随机森林是一种基于决策树集合的监督学习算法,它可以用于回归和分类任务。通过构建多个决策树并将它们的结果聚合起来,可以有效减少过拟合并提高模型性能。 下面是一个简单的Python示例代码,展示如何利用随机森林模型预测湖南省空气质量指数(AQI): ```python # 导入必要的库 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error # 假设我们有一个包含历史数据的数据集 data = { '温度': [20, 25, 30, 18], # 示例特征值 '湿度': [60, 70, 90, 40], '风速': [5, 3, 8, 6], 'AQI': [50, 70, 120, 40] # 目标变量 } df = pd.DataFrame(data) # 特征选择与目标设置 X = df[['温度', '湿度', '风速']] # 输入特征 y = df['AQI'] # 输出标签 (AQI) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 初始化并训练随机森林模型 rf_model = RandomForestRegressor(n_estimators=100, random_state=42) rf_model.fit(X_train, y_train) # 使用测试集进行预测 predictions = rf_model.predict(X_test) # 计算均方误差评估结果 mse = mean_squared_error(y_test, predictions) print(f"均方误差(MSE): {mse}") # 对新样本进行预测 new_sample = [[22, 65, 4]] # 新样本输入(例如某天的天气条件) predicted_aqi = rf_model.predict(new_sample)[0] print(f"预测的 AQI: {predicted_aqi}") ``` 此代码演示了从准备数据到建立、训练及评价随机森林模型的过程,并最终对一个新的天气条件下进行了空气品质指数预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值