标准正态分布的E(X^4)积分求解

对于标准正态分布,其形式特别友好,而计算四次方数学期望,积分明显是最简单粗暴的方式,网上很多证明过程太过简陋,所以我就自己去尝试着证明了一下,因为是不可积函数,中间需要极坐标转换,证明过程如下,才疏学浅,如有疑问,欢迎留言:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
至此,证明完毕,字很潦草,因为证得太急,但是应该不影响,看完前两张图应该就能会证了,后面没有什么技巧性可言。

### 关于标准正态累积分布函数 在统计学中,标准正态累积分布函数(Standard Normal Cumulative Distribution Function, CDF)用于描述随机变量小于等于某个特定值的概率。对于标准正态分布而言,其均值为0,方差为1。 公式表示如下: \[ \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2}\ dt \] 该积分无法通过初等函数解析求解,因此通常采用数值近似的方法来计算[^1]。 #### Python 实现方式 Python 中可以利用 `scipy.stats` 库中的 `norm.cdf()` 函数快速获取标准正态累积分布函数的结果。以下是具体实现代码: ```python from scipy.stats import norm def standard_normal_cdf(x): """Calculate the Standard Normal Cumulative Distribution Function.""" return norm.cdf(x) # Example usage print(standard_normal_cdf(0)) # Output should be close to 0.5 since P(X<=0)=0.5 when X~N(0,1) ``` 如果希望手动编写不依赖外部库的版本,则可以通过泰勒级数展开或者其他数值方法来进行逼近。这里给出一种基于误差函数 erf 的简单实现方案: ```python import math def erf(z): t = 1.0 / (1.0 + 0.5 * abs(z)) ans = 1 - t * math.exp(-z*z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277))))))))) if z >= 0: return ans else: return -ans def standard_normal_cdf_manual(x): """Manually calculate the Standard Normal Cumulative Distribution Function using error function""" return 0.5 * (1 + erf(x/math.sqrt(2))) # Example usage print(standard_normal_cdf_manual(0)) # Should also output approximately 0.5 ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值