2021-07-06

提出正确的问题,往往等于解决了问题的一大半。————海森堡


矩阵方面还有几个问题没有想明白:
  • 相似矩阵的直觉感受是什么, P − 1 A P = B P^{-1}AP=B P1AP=B中的 P P P是什么?(解决,见文末图片)
  • 另外相似矩阵和拉回映射有什么关系?拉回映射该如何理解?物理里面参考构型和标准构型间的拉回映射和矩阵理论里的同态等关系是什么?
  • 对称矩阵在物理中很常用,很多物理张量都是对称的,为什么?对称矩阵和伴随矩阵有什么具体的联系?合同矩阵和对称的关系?
  • 分块矩阵的计算原理是什么?分块矩阵是否可以理解为对空间的划分?这里的计算可行性与线性变换的核、线性变换的像有没有什么关系?
  • 对于非方阵,是否可以补零成为方阵,用方阵的两种理解方式,即变换和坐标系去理解?

记录一下无意间看到和想到的:
  • 行列式的几何意义其实从微积分Jacobi行列式是最容易理解,表示变换前后,坐标网格面积的比,微积分局部做的就是线性近似,还可以试试和微分几何联动一下。
  • 计算机图形学和自动驾驶等用到的放射坐标系,多加一维表示平移,和前面思考的升维分块矩阵可能相关. 其中旋转矩阵和坐标变换可以相互对照着看看。
  • 处理旋转问题的复数,一开始是为了引进 i i i使得多项式的根的个数和最高次相等,然后为了把复数反映在数轴上,什么操作做两次可以取反,嗯,那是旋转90度,所以数被扩充到了整个平面,变成复数域,可以表示复数了,而这样,恰好可以用 z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ)处理几何问题了。复数和矩阵的关系有空也可以考虑下。

矩阵左右乘的意义:

先从空间变换的角度说说矩阵的左乘、右乘分别是什么意思吧。
要说这个,首先要说一下绝对坐标系和工作坐标系,这两个名词在不同学科又不同名字,如基准坐标可以叫做fixed frame,stardard frame,工作坐标系有时也叫body frame,reference frame。从实用上讲,研究东西的时候有时会直接在当前位置建立工作坐标系,可是不同时间,或者不同人会选取不同工作坐标系,如何统一呢?这时就要靠绝对坐标系,每个工作坐标系和绝对坐标系的关系是什么,工作坐标系 A A A与绝对坐标 S S S有某个变换关系,工作坐标系 B B B与绝对坐标 S S S有另一个变换关系,这时 A A A B B B的关系就可以找到了。

绝对坐标系是空间固定不变的一个标准坐标系,一般而言,用一组由单位阵表示的标准正交集来表示,通俗一点说,这组基的坐标为 e 1 = [ 1 , 0 , … , 0 ] T , e 2 = [ 0 , 1 , … , 0 ] T , … , e n = [ 0 , … , 0 , 1 ] T e_1=[1,0,\dots,0]^T,e_2=[0,1,\dots,0]^T,\dots,e_n=[0,\dots,0,1]^T e1=[1,0,,0]T,e2=[0,1,,0]T,,en=[0,,0,1]T,由一个矩阵表示如下
[ 1 1 ⋱ 1 ] \left[ \begin{matrix} 1& & & \\ & 1& & \\ & & \ddots& \\ & & & 1\\ \end{matrix} \right] 111
工作坐标系的基 A = [ α 1 , α 2 , ⋯   , α n ] A=\left[ \alpha _1,\alpha _2,\cdots ,\alpha _n \right] A=[α1,α2,,αn],如果 α i \alpha_i αi为各个基向量在绝对坐标系下的坐标值,记为 S A = [ S α 1 , S α 2 , ⋯   , S α n ] ^SA=\left[ ^S\alpha _1,^S\alpha _2,\cdots ,^S\alpha _n \right] SA=[Sα1,Sα2,,Sαn],即 A A A的各列为其基在固定坐标系 S S S下的坐标。

其实对应的如果要表示坐标系 A A A在另一组基 B B B或者基 C C C下的表示,按这种表示可以记为 B A ^BA BA或者 C A ^CA CA,其值满足关系 ( S B ) ( B A ) = ( S C ) ( C A ) = ( S S ) ( S A ) = ( I ) ( S A ) (^SB)(^BA)=(^SC)(^CA)=(^SS)(^SA)=(I)(^SA) (SB)(BA)=(SC)(CA)=(SS)(SA)=(I)(SA),其中 S B , S C ^SB,^SC SB,SC为基 B B B或者基 C C C在绝对坐标下的坐标表示。这算是对基 S B ^SB SB右乘的一种解释,即另一组基在这组基上的坐标表示。举个例子,其实任何基在在自己上的坐标为单位阵 A A = I ^AA=I AA=I,在一个把自己各个分量放大两倍的基上的坐标为 1 2 I \dfrac{1}{2}I 21I,这里注意到基和坐标的变换其实是有差别的。

回到变换角度,一个变换 T T T在固定基 S S S下的表示为矩阵 S T ^ST ST,将其左乘在矩阵 S A ^SA SA上,即对 S A ^SA SA的每一个列向量做了变换 S T ^ST ST,这组基的每一个基坐标表示变为 S ( T A ) = [ S T S α 1 , S T S α 2 , ⋯   , S T S α n ) ] ^S(TA)=\left[ ^ST ^S\alpha _1, ^ST^S\alpha _2,\cdots ,^ST^S\alpha _n)\right] S(TA)=[STSα1,STSα2,,STSαn)]

一个变换矩阵 T T T S A ^SA SA下的表示为 A T ^AT AT,将 A T ^AT AT右乘 S A ^SA SA矩阵,则有
S A A T = [ α 1 α 2 ⋯ α n ] A T = [ α 1 α 2 ⋯ α n ] [ T 11 T 12 ⋯ T 14 T 21 T 22 ⋯ T 2 n ⋯ ⋯ ⋯ ⋯ T n 1 T n 2 ⋯ T n n ] = [ α 1 α 2 ⋯ α n ] [ T 11 T 12 ⋯ T 14 T 21 T 22 ⋯ T 2 n ⋯ ⋯ ⋯ ⋯ T n 1 T n 2 ⋯ T n n ] = [ T 11 α 1 + T 21 α 2 + ⋯ + T n 1 α n , T 12 α 1 + T 22 α 2 + ⋯ + T n 2 , α n , ⋯   , T 1 n α 1 + T 2 n α 2 + ⋯ + T n n , α n ] = [ β 1 β 2 ⋯ β n ] \begin{array}{l} ^SA^AT=\left[ \begin{matrix} \alpha _1& \alpha _2& \cdots& \alpha _n\\ \end{matrix} \right] ^AT \\ =\left[ \begin{matrix} \alpha _1& \alpha _2& \cdots& \alpha _n\\ \end{matrix} \right] \left[ \begin{matrix} T_{11}& T_{12}& \cdots& T_{14}\\ T_{21}& T_{22}& \cdots& T_{2n}\\ \cdots& \cdots& \cdots& \cdots\\ T_{n1}& T_{n2}& \cdots& T_{nn}\\ \end{matrix} \right] \\ =\left[ \begin{matrix} \alpha _1& \alpha _2& \cdots& \alpha _n\\ \end{matrix} \right] \left[ \begin{matrix} T_{11}& T_{12}& \cdots& T_{14}\\ T_{21}& T_{22}& \cdots& T_{2n}\\ \cdots& \cdots& \cdots& \cdots\\ T_{n1}& T_{n2}& \cdots& T_{nn}\\ \end{matrix} \right] \\ =\left[ T_{11}\alpha _1+T_{21}\alpha _2+\cdots +T_{n1}\alpha _n,T_{12}\alpha _1+T_{22}\alpha _2+\cdots +T_{n2,}\alpha _n,\cdots ,T_{1n}\alpha _1+T_{2n}\alpha _2+\cdots +T_{nn,}\alpha _n \right] \\ =\left[ \begin{matrix} \beta _1& \beta _2& \cdots& \beta _n\\ \end{matrix} \right] \end{array} SAAT=[α1α2αn]AT=[α1α2αn]T11T21Tn1T12T22Tn2T14T2nTnn=[α1α2αn]T11T21Tn1T12T22Tn2T14T2nTnn=[T11α1+T21α2++Tn1αn,T12α1+T22α2++Tn2,αn,,T1nα1+T2nα2++Tnn,αn]=[β1β2βn]
可以看到,基 A = [ S α 1 S α 2 ⋯ S α n ] A=\left[ \begin{matrix}^S\alpha _1&^S\alpha _2&\cdots& ^S\alpha _n\\ \end{matrix} \right] A=[Sα1Sα2Sαn]右乘 A T ^AT AT表示在变换 A T ^AT AT下,原来的基变成了一组新的基 [ S β 1 S β 2 ⋯ S β n ] \left[\begin{matrix}^S\beta _1&^S\beta _2&\cdots&^S\beta _n\\ \end{matrix} \right] [Sβ1Sβ2Sβn],其中每一个新的基都是线性变换前的基的线性组合。

举个例子说明一下
在这里插入图片描述

第一个为固定坐标系 S S S,第二个为工作坐标 A A A,第三个为工作坐标 B B B S S S Z S Z_S ZS轴旋转得到坐标 A A A A A A再绕 A A A Y A Y_A YA轴旋转得到坐标 B B B,三个坐标系在 S S S中的描述为:
S S = [ 1 0 0 0 1 0 0 0 1 ] , S A = [ 0 − 1 0 1 0 0 0 0 1 ] , S B = [ 0 − 1 0 0 0 − 1 1 0 0 ] ^SS=\left[ \begin{matrix} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\\ \end{matrix} \right] ,^SA=\left[ \begin{matrix} 0& -1& 0\\ 1& 0& 0\\ 0& 0& 1\\ \end{matrix} \right] ,^SB=\left[ \begin{matrix} 0& -1& 0\\ 0& 0& -1\\ 1& 0& 0\\ \end{matrix} \right] SS=100010001,SA=010100001,SB=001100010

空间中同一点 P P P S S S A A A B B B三个坐标标架下的坐标分别为
S p = [ 1 1 0 ] , A p = [ 1 − 1 0 ] , B p = [ 0 − 1 − 1 ] ^Sp=\left[ \begin{array}{c} 1\\ 1\\ 0\\ \end{array} \right] , ^Ap=\left[ \begin{array}{c} 1\\ -1\\ 0\\ \end{array} \right] , ^Bp=\left[ \begin{array}{c} 0\\ -1\\ -1\\ \end{array} \right] Sp=110,Ap=110,Bp=011
满足
   ( S A ) ( A p ) = ( S B ) ( B p ) = ( S S ) ( S p ) = [ 1 1 0 ] = ( I ) ( S p ) = S p \,\,\left( ^SA \right) \left( ^Ap \right) =\left( ^SB \right) \left( ^Bp \right) =\left( ^SS \right) \left( ^Sp \right) =\left[ \begin{array}{c} 1\\ 1\\ 0\\ \end{array} \right] =\left( I \right) \left( ^Sp \right) =^Sp (SA)(Ap)=(SB)(Bp)=(SS)(Sp)=110=(I)(Sp)=Sp

  1. 固定坐标系角度看坐标系的变换的复合
  • 第一个 S → A S\rightarrow A SA是一个 S S S下绕着 Z S Z_S ZS的旋转变换矩阵
    S T S A = [ 0 − 1 0 1 0 0 0 0 1 ] ^ST_{SA}=\left[ \begin{matrix} 0& -1& 0\\ 1& 0& 0\\ 0& 0& 1\\ \end{matrix} \right] STSA=010100001
  • 第二个 A → B A\rightarrow B AB是一个 S S S下绕着 X S X_S XS的旋转变换矩阵
    S T A B = [ 1 0 0 0 0 − 1 0 1 0 ] ^ST_{AB}=\left[ \begin{matrix} 1& 0& 0\\ 0& 0& -1\\ 0& 1& 0\\ \end{matrix} \right] STAB=100001010
    连着做了两次变换 S → A → B S\rightarrow A\rightarrow B SAB的变换应该是后做的变换左乘前做的变换 ( S T A B ) ( S T S A ) (^ST_{AB} )(^ST_{SA}) (STAB)(STSA)
  1. 工作坐标系角度看坐标系的变换的复合
  • 第一个 S → A S\rightarrow A SA是一个 S S S下绕着 Z S Z_S ZS的旋转变换矩阵
    S T S A = [ 0 − 1 0 1 0 0 0 0 1 ] ^ST_{SA}=\left[ \begin{matrix} 0& -1& 0\\ 1& 0& 0\\ 0& 0& 1\\ \end{matrix} \right] STSA=010100001
  • 第二个 A → B A\rightarrow B AB是一个 A A A下绕着 Y A Y_A YA的旋转变换矩阵
    A T A B = [ 0 0 − 1 0 1 0 1 0 0 ] ^AT_{AB}=\left[ \begin{matrix} 0& 0& -1\\ 0& 1& 0\\ 1& 0& 0\\ \end{matrix} \right] ATAB=001010100
    连着做了两次变换 S → A → B S\rightarrow A\rightarrow B SAB的变换应该是后做的变换右乘前做的变换 ( S T S A ) ( A T A B ) (^ST_{SA})(^AT_{AB} ) (STSA)(ATAB)
  1. 从点的坐标变换 A p → B p ^Ap \rightarrow ^Bp ApBp看线性变换
       ( S A ) ( A p ) = ( S B ) ( B p ) = S p    ( S B ) − 1 ( S A ) ( A p ) = ( B p ) \,\,\left( ^SA \right) \left( ^Ap \right) =\left( ^SB \right) \left( ^Bp \right) =^Sp \\ \,\,\left( ^SB \right) ^{-1}\left( ^SA \right) \left( ^Ap \right) =\left( ^Bp \right) (SA)(Ap)=(SB)(Bp)=Sp(SB)1(SA)(Ap)=(Bp)
    事实上,
    ( A T A B ) ( B p ) = [ 0 0 − 1 0 1 0 1 0 0 ] [ 0 − 1 − 1 ] = [ 1 − 1 0 ] = ( A p ) (^AT_{AB})(^Bp)=\left[ \begin{matrix} 0& 0& -1\\ 0& 1& 0\\ 1& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} 0\\ -1\\ -1\\ \end{array} \right] =\left[ \begin{array}{c} 1\\ -1\\ 0\\ \end{array} \right] =(^Ap) (ATAB)(Bp)=001010100011=110=(Ap)
    因此有:
    ( S B ) = ( S A ) ( A T A B ) \left( ^SB \right) =\left(^SA\right)(^AT_{AB}) (SB)=(SA)(ATAB)
    这说明 A T A B ^AT_{AB} ATAB S B ^SB SB S A ^SA SA上的投影。

相似矩阵的P是什么,怎么理解相似:

不想打字了,随便写一下~
在这里插入图片描述

这里引申到拉回映射的,能否引申至协变,反变定义?还得再挖一挖


先记录这么多吧,貌似好多想法一闪而过,还不是很清晰,慢慢整理。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值