雅可比(Jacobi)矩阵与行列式

函数矩阵与行列式(雅可比(Jacobi)矩阵与行列式)

1.雅可比矩阵与行列式的定义

  • 设由mn元函数组成的函数组:

         yi=fi(x1,x2,...,xn)     (i=1,2,...,m)

     如果每一存在,则称mn矩阵

        

     为函数组的雅可比矩阵,或称为函数矩阵,记为

  • 设由nn元函数组成的函数组:

         yi=fi(x1,x2,...,xn)     (i=1,2,...,n)

     如果所有一阶偏导数存在,则它的雅可比矩阵的行列式:

        

     称为函数组的雅可比行列式,或称为函数行列式,记为.

2.雅可比行列式的性质

  雅可比行列式有与普通导数相似的一系列性质.

  • 设在区域D Rn中有函数组:yi=fi(x,x,...,xn)     i=1,2,...,n      (1)21

     在区域PRn中又有函数组:xi=φi(t1,t2,...,tn)      i=1,2,...,n      (2)

     且当点(t1,t2,...,tn)P中变动时,对应的点(x1,x2,...,xn)不越出区域D.于是有复合函数组:

            yi=fi(φ1(t1,t2,...,tn),φ2(t1,t2,...,tn),...,φn(t1,t2,...,tn))    (3)

     则函数组(1),(2),(3)之间的雅可比行列式有以下关系:

           

     这个性质是一元复合函数求导法则的推广:

          

  • 特别,如果在(2)式中令ti=yii=1,2,...,n),则由(3)式

          

     它是一元函数的反函数微分法则

           

     的推广.

  • 设由以下两个函数组:

             yi=fi(x1,x2,...,xn)     i=1,2,...,m

             xj=φj(t1,t2,...,tm)      j=1,2,...,n    (m<n)

     确定复合函数:

             yi=fi(φ1(t1,t2,...,tm),φ2(t1,t2,...,tm),...,φn(t1,t2,...,tm))

     则雅可比行列式(假设所有一阶偏导数存在且连续):

           

     式中(i1,i2,...,im)表示每个ij1,2,...,n中的一个标号,和号是对所有可能的(i1,i2,...,im)相加.

     m=1时,上面公式就是普通的复合函数求导公式:

            

  • 设有2n个变量n个方程组成的方程组

             Fi(x1,x2,...,xn;y1,y2,...,yn)=0     ( i=1,2,...,n )

    

     y1,y2,...,yn看成是由此方程组确定的x1,x2,...,xn的函数,则

            

     这个公式是由F(x,y)=0所确定的隐函数y=f(x)的求导公式:

            

     的推广.

  • 雅可比行列式可作为坐标变换时面积(体积)元素的伸缩系数.

     (1)ui=ui(x1,x2,...,xn)    ( i=1,2,...,n )

        是从(x1,x2,...,xn)(u1,u2,...,un)的坐标变换,

            

       (假设所出现的偏导数在某一区域上都存在且连续),那么有

            

     (2)R2中,设u=u(x,y)v=v(x,y),则

            

        特别,在平面直角坐标系与极坐标系的变换中,x=rcosφy=rsinφ,则

       

     (3)R3中,设u=u(x,y,z)v=v(x,y,z)w=w(x,y,z),则

            

        特别,在直角坐标系与球面坐标系的变换中

              x=rsinθcosφy=rsinθsinφz=r cosθ.

            

        在直角坐标系与圆柱坐标系变换中

             x=rcosφy=rsinφz=z  .

             

### MATLAB 中计算可比矩阵的方法 在 MATLAB 中可以利用 `jacobian` 函数来构建可比矩阵。对于给定向量函数,此函数会自动求解各个变量关于各分量的偏导数并形成相应的克比矩阵[^1]。 下面展示一段用于定义和计算特定向量函数 `[x*y*z, y^2, x + z]` 对应于自变量 `[x, y, z]` 的可比矩阵的代码: ```matlab syms x y z; f = [x * y * z, y ^ 2, x + z]; % 定义多维函数 f(x,y,z) vars = [x, y, z]; J = jacobian(f, vars); % 计算可比矩阵 J disp(J); ``` 这段脚本首先声明了三个符号型变量 `x`, `y`, 和 `z`;接着创建了一个由这三个变量组成的向量函数列表 `f`;最后调用了内置命令 `jacobian()` 来获取这些表达式的可比行列式,并通过 `disp()` 显示出来。 如果考虑的是机械臂运动学中的情况,则可以通过矢量积的方式来理解每一列代表的意义。例如,在笛卡尔空间里描述末端执行器的速度时,第 \(i\) 列表示关节速度对位置变化的影响,形式上写作: \[ J_i=\left[\begin{array}{c} \mathbf{v}_j \\ \mathbf{\omega}_j \end{array}\right]\] 其中 \(\mathbf{v}_j\) 表示线速度而 \(\mathbf{\omega}_j\) 是角速度[^2]。 为了更贴近实际应用需求,这里给出一个简单的例子——假设有一个两连杆平面机器人手臂模型,其正向运动方程为: \[ p_x=l_1 c_{q_1}+l_2 c_{(q_1+q_2)}\\p_y=l_1 s_{q_1}+l_2 s_{(q_1+q_2)} \] 要得到这个系统的可比矩阵可以用如下方式编码: ```matlab % 参数设置 syms q1 q2 l1 l2 real positive; % 正向运动学公式 px = l1*cos(q1)+l2*cos(q1+q2); py = l1*sin(q1)+l2*sin(q1+q2); % 组合成位姿向量 pos = [px; py]; % 调用 Jacobian 函数获得可比矩阵 jacobi_matrix = jacobian(pos,[q1;q2]); simplify(jacobi_matrix) % 简化输出结果以便阅读 ``` 上述代码片段展示了如何针对具体物理系统建立对应的数学模型,并借助 MATLAB 提供的功能快速有效地完成复杂运算任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值