从本质出发推导三大坐标系下的三大方程(二)——散度方程

对于很多数学和工程问题,我们常常需要使用到梯度、散度和旋度方程,而有的时候,在使用这些方程时,我们却对它们其中的数学、物理意义不甚清楚,结果便是看着很多在此基础上建立的公式而一头雾水。这篇文章便从这三大方程的本质入手,推导它们在三大经典坐标系下的形式,揭露其”庐山真面目“!


 

散度公式


散度的意义

       维基百科对散度是这么定义的:

散度或称发散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。

       例如,在空气动力学上,速度散度的物理意义是单位体积运动流体的体积变化率(参考安德森教授的《空气动力学基础》)。

       在定义向量场的散度前(散度是向量场独有的),首先要引入通量的概念。给定一个三维空间中的向量场 A ⃗ \vec{A} A 以及一个简单有向曲面 Σ ⃗ \vec{\Sigma} Σ ,则向量场 A ⃗ \vec{ A} A 通过曲面 Σ ⃗ \vec{\Sigma} Σ 的通量就是曲面每一点 x ⃗ \vec{x} x 上的场向量 A ⃗ ( x ⃗ ) \vec{A}(\vec{x}) A (x )在曲面法向方向上的分量的积分:
Φ A ⃗ ( x ⃗ ) = ∬ Σ A ⃗ ⋅ n ⃗ d S \Phi_{\vec{A}}(\vec{x}) = \iint_{\Sigma}^{ }\vec{A}\cdot\vec{n}dS ΦA (x )=ΣA n dS
其中 d S dS dS是积分的面积元, n ⃗ \vec{n} n Σ ⃗ \vec{\Sigma} Σ 在点 ( x , y , z ) (x,y,z) (x,y,z)处的单位法向量。如果曲面是封闭的,例如球面,那么通常约定法向量是从里朝外的,所以这时候的通量是描述曲面上的场向量朝外的程度。

       通量描述了一固定区域(也就是 Σ ⃗ \vec{\Sigma} Σ )上向量场的流通倾向,散度在某点的值则是这个性质的在这点的局部描述,也就是说,从散度在一点的值,我们可以看出向量场在这点附近到底倾向发散还是收敛。要算某一点 ( x , y , z ) ( x,y,z) x,y,z处的散度,先求包含这一点的某一个封闭曲面 Σ ⃗ \vec{\Sigma} Σ 的通量 Φ A ⃗ ( x ⃗ ) \Phi_{\vec{A}}(\vec{x}) ΦA (x )除以封闭曲面 Σ ⃗ \vec{\Sigma} Σ 围起来的微小体元 δ V \delta V δ

  • 65
    点赞
  • 240
    收藏
    觉得还不错? 一键收藏
  • 25
    评论
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值