拉普拉斯算子从笛卡尔坐标系到圆柱坐标系下的推导过程

本文介绍如何将圆膜振动方程从笛卡尔坐标系转换到圆柱坐标系的过程。通过对拉普拉斯算子定义式的转换,利用坐标转换关系进行推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这段时间推导圆膜振动方程的时候,需要将振动方程从笛卡尔坐标系转换到圆柱坐标系。虽然这个结果书上都有了,但是不满足于直接给出的结果,想自己推导一下。于是就有了下面的内容。总结起来:就是将笛卡尔坐标系下的拉普拉斯算子定义式和圆柱坐标系下拉普拉斯算子定义式之间的关系通过坐标转换对应起来,然后利用待定系数法求解相应的系数就可以了。话不多说,上干货。
笛卡尔坐标系下的拉普拉斯算子定义为:
(2-1)
圆柱坐标系与笛卡尔坐标系的关系如图1所示:
图1
笛卡尔坐标系与圆柱坐标系的坐标转换关系为:
这里写图片描述 (2-2)
对上式中的两个变量求取一阶和二阶偏微分:
这里写图片描述(2-3)
这里写图片描述(2-4)
这里写图片描述(2-5)(2-6)
这里写图片描述(2-7)
这里写图片描述(2-8)
这里写图片描述
这里写图片描述
同样的方法可以得到笛卡尔坐标同任何坐标系下的拉普拉斯算子的转换关系。
这里从wiki上直接附上三维的结果。
这里写图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值