从本质出发理解掌握三大坐标系下的三大方程(一)——梯度公式

8 篇文章 3 订阅
3 篇文章 7 订阅

对于很多数学和工程问题,我们常常需要使用到梯度、散度和旋度公式,而有的时候,虽然在使用这些公式,却对他们其中的物理意义不甚清楚,这样的后果是只能对公式死记硬背,但结果还是常常忘记。这篇文章便从这三大公式的本质入手,推导它们在三大经典坐标系下的形式,授以“捕鱼”之道!


 

梯度公式


       开始之前,我们先来回忆一下梯度公式的数学意义,它描述了函数在某点函数值增加最快的方向,它的模就等于函数在该点方向导数的最大值。用直观的解释就是,假设你现在位于一座山上,则这一点的梯度是在该点坡度(或者说斜度)最陡的方向,梯度的大小告诉我们坡度到底有多陡。
梯度方向
那么为什么梯度的方向就是函数增加最大的方向呢?证明过程十分简单:
       如果 f ( x , y , z ) f(x,y,z) f(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}(x_{0},y_{0},z_{0}) P0(x0,y0,z0)可微,则函数在该点任意方向的 e l e_{l} el的方向导数为 ∂ f ∂ l ∣ ( x 0 , y 0 , z 0 ) = f x ( x 0 , y 0 , z 0 ) c o s α + f y ( x 0 , y 0 , z 0 ) c o s β + f z ( x 0 , y 0 , z 0 ) c o s γ \frac{\partial f}{\partial l}|_{(x_{0},y_{0},z_{0})}=f_{x}(x_{0},y_{0},z_{0})cos\alpha + f_{y}(x_{0},y_{0},z_{0})cos\beta + f_{z}(x_{0},y_{0},z_{0})cos\gamma lf(x0,y0,z0)=fx(x0,y0,z0)cosα+fy(x0,y0,z0)cosβ+fz(x0,y0,z0)cosγ,其中 c o s α 、 c o s β 、 c o s γ cos\alpha、cos\beta、cos\gamma cosαcosβcosγ l l l的方向余弦。
       我们把上式看成两个向量点积的形式,则变为 ∂ f ∂ l ∣ ( x 0 , y 0 , z 0 ) = ( f x ( x 0 , y 0 , z 0 ) , f y ( x 0 , y 0 , z 0 ) , f z ( x 0 , y 0 , z 0 ) ) ⋅ ( c o s α , c o s β , c o s γ ) ) \frac{\partial f}{\partial l}|_{(x_{0},y_{0},z_{0})}=(f_{x}(x_{0},y_{0},z_{0}),f_{y}(x_{0},y_{0},z_{0}),f_{z}(x_{0},y_{0},z_{0}) )\cdot(cos\alpha,cos\beta,cos\gamma)) lf(x0,y0,z0)=(fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0))(cosα,cosβ,cosγ))
又因为 ∣ ( c o s α , c o s β , c o s γ ) ∣ = 1 |(cos\alpha,cos\beta,cos\gamma)|=1 (cosα,cosβ,cosγ)=1,所以,上面那个方向导数的最大值就是 ∣ ( f x ( x 0 , y 0 , z 0 ) , f y ( x 0 , y 0 , z 0 ) , f z ( x 0 , y 0 , z 0 ) ) ∣ |(f_{x}(x_{0},y_{0},z_{0}),f_{y}(x_{0},y_{0},z_{0}),f_{z}(x_{0},y_{0},z_{0}) )| (fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0))。要取得该最大值,就是将 l l l的方向取成向量 ( f x ( x 0 , y 0 , z 0 ) , f y ( x 0 , y 0 , z 0 ) , f z ( x 0 , y 0 , z 0 ) ) (f_{x}(x_{0},y_{0},z_{0}),f_{y}(x_{0},y_{0},z_{0}),f_{z}(x_{0},y_{0},z_{0}) ) (fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0))的方向,而 ( f x ( x 0 , y 0 , z 0 ) , f y ( x 0 , y 0 , z 0 ) , f z ( x 0 , y 0 , z 0 ) ) (f_{x}(x_{0},y_{0},z_{0}),f_{y}(x_{0},y_{0},z_{0}),f_{z}(x_{0},y_{0},z_{0}) ) (fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0))恰恰是该点处梯度的方向,至此,我们便证明了梯度的方向就是函数值增加最大的方向。


 

笛卡尔坐标系下的梯度公式


       在上面的推导过程中,我们已经得到了在笛卡尔坐标系下的梯度公式: ▽ f ( x , y , z ) = ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ + ∂ f ∂ z k ⃗ \bigtriangledown f(x,y,z)=\frac{\partial f}{\partial x}\vec{i}+\frac{\partial f}{\partial y}\vec{j}+\frac{\partial f}{\partial z}\vec{k} f(x,y,z)=xfi +yfj +zfk


 

柱面坐标系下的梯度公式


       柱面坐标系也是正交坐标系,可以看成是笛卡尔坐标系在空间重旋转了一个角度得到的,根据笛卡尔坐标系下梯度公式的推导,我们可以很自然地想到柱面坐标系下的梯度就是 f ( x , y , z ) f(x,y,z) f(x,y,z) e r ⃗ 、 e θ ⃗ 、 e z ⃗ \vec{e_{r}}、\vec{e_{\theta}}、\vec{e_{z}} er eθ ez 方向的偏导数组成的向量,也就是 ( f e r ⃗ , f e θ ⃗ , f e z ⃗ ) (f_{\vec{e_{r}}},f_{\vec{e_{\theta}}},f_{\vec{e_{z}}}) (fer ,feθ ,fez ),接下来,我们只需推导这三个偏导数即可。
f e r ⃗ = lim ⁡ △ r − > 0 f + △ f − f r + △ r − r = ∂ f ∂ r f_{\vec{e_{r}}} = \lim_{\bigtriangleup r->0}\frac{f+\bigtriangleup f - f}{r+\bigtriangleup r - r}=\frac{\partial f}{\partial r} fer =r>0limr+rrf+ff=rf
f e θ ⃗ = lim ⁡ △ θ − > 0 f + △ f − f r ( θ + △ θ ) − r θ = ∂ f r ∂ θ f_{\vec{e_{\theta}}} = \lim_{\bigtriangleup \theta->0}\frac{f+\bigtriangleup f - f}{r(\theta+\bigtriangleup\theta) -r\theta}=\frac{\partial f}{r\partial \theta} feθ =θ>0limr(θ+θ)rθf+ff=rθf
f e z ⃗ = lim ⁡ △ z − > 0 f + △ f − f z + △ z − z = ∂ f ∂ z f_{\vec{e_{z}}} = \lim_{\bigtriangleup z->0}\frac{f+\bigtriangleup f - f}{z+\bigtriangleup z - z}=\frac{\partial f}{\partial z} fez =z>0limz+zzf+ff=zf
于是,我们便得到了柱面坐标下的梯度公式: ▽ f ( r , θ , z ) = ∂ f ∂ r e r ⃗ + ∂ f r ∂ θ r θ ⃗ + ∂ f ∂ z e z ⃗ \bigtriangledown f(r,\theta,z)=\frac{\partial f}{\partial r}\vec{e_r}+\frac{\partial f}{r\partial \theta}\vec{r_\theta}+\frac{\partial f}{\partial z}\vec{e_z} f(r,θ,z)=rfer +rθfrθ +zfez
说明:梯度终究是一个由位移的偏导数组成的量,但是对 θ \theta θ的偏导数并不是一个对位移的偏导数,所以其最后转化成了弧长!


 

球面坐标系下的梯度公式


       如果你能搞懂柱面坐标下的梯度公式是怎么来的话,球面坐标系下的梯度公式也不在话下了。
f e r ⃗ = lim ⁡ △ r − > 0 f + △ f − f r + △ r − r = ∂ f ∂ r f_{\vec{e_{r}}} = \lim_{\bigtriangleup r->0}\frac{f+\bigtriangleup f - f}{r+\bigtriangleup r - r}=\frac{\partial f}{\partial r} fer =r>0limr+rrf+ff=rf
f e θ ⃗ = lim ⁡ △ θ − > 0 f + △ f − f r ( θ + △ θ ) − r θ = ∂ f r ∂ θ f_{\vec{e_{\theta}}} = \lim_{\bigtriangleup \theta->0}\frac{f+\bigtriangleup f - f}{r(\theta+\bigtriangleup\theta) -r\theta}=\frac{\partial f}{r\partial \theta} feθ =θ>0limr(θ+θ)rθf+ff=rθf
f e ϕ ⃗ = lim ⁡ △ ϕ − > 0 f + △ f − f r s i n θ ( ϕ + △ ϕ ) − r s i n θ ϕ = ∂ f r s i n θ ∂ ϕ f_{\vec{e_{\phi}}} = \lim_{\bigtriangleup \phi->0}\frac{f+\bigtriangleup f - f}{rsin\theta(\phi+\bigtriangleup \phi) - rsin\theta\phi}=\frac{\partial f}{rsin\theta\partial \phi} feϕ =ϕ>0limrsinθ(ϕ+ϕ)rsinθϕf+ff=rsinθϕf
这样,我们也就得到了球面坐标系下的梯度公式:
▽ f ( r , θ , ϕ ) = ∂ f ∂ r e r ⃗ + ∂ f r ∂ θ r θ ⃗ + ∂ f r s i n θ ∂ ϕ e ϕ ⃗ \bigtriangledown f(r,\theta,\phi)=\frac{\partial f}{\partial r}\vec{e_r}+\frac{\partial f}{r\partial \theta}\vec{r_\theta}+\frac{\partial f}{rsin\theta\partial \phi}\vec{e_\phi} f(r,θ,ϕ)=rfer +rθfrθ +rsinθϕfeϕ


  • 33
    点赞
  • 129
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
坐标系中的三类齐次方程为: 1. 球贝塞尔方程: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2R}{\partial\theta^2}+\frac{1}{r^2}\frac{\partial^2R}{\partial z^2}+k^2R=0$$ 其中,$R$是仅依赖于 $r$ 的函数。 2. 圆柱贝塞尔方程: $$\frac{\partial^2R}{\partial r^2}+\frac{1}{r}\frac{\partial R}{\partial r}+\frac{1}{r^2}\frac{\partial^2R}{\partial\theta^2}+k^2R=0$$ 其中,$R$是仅依赖于 $r$ 的函数。 3. 圆柱调和方程: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2R}{\partial\theta^2}+\frac{1}{r^2}\frac{\partial^2R}{\partial z^2}=0$$ 其中,$R$是仅依赖于 $r$ 的函数。 根据分离变量法,假设 $R(r)=H(r)\Theta(\theta)Z(z)$,则上述三类方程分别可以化为: 1. 球贝塞尔方程: $$\frac{1}{rH}\frac{d}{dr}\left(r\frac{dH}{dr}\right)-\frac{\Theta''}{\Theta}-\frac{1}{r^2}\left(k^2r^2-\Theta''\right)Z=0$$ 2. 圆柱贝塞尔方程: $$\frac{d^2H}{dr^2}+\frac{1}{r}\frac{dH}{dr}+\left(k^2-\frac{\Theta''}{r^2}\right)H=0$$ 3. 圆柱调和方程: $$\frac{1}{rH}\frac{d}{dr}\left(r\frac{dH}{dr}\right)-\frac{\Theta''}{\Theta}-\frac{Z''}{Z}=0$$ 其中,$\Theta(\theta)$和$Z(z)$分别为 $\Theta''$ 和 $Z''$ 的常数本征值。求解上述方程的本征值和本征函数可以得到一般解,即: $$u(r,\theta,z)=\sum_{n,m,l}A_{nml}J_{n}(k_{nl}r)\Theta_{m}(\theta)Z_{l}(z)$$ 其中,$J_n$是球贝塞尔函数或圆柱贝塞尔函数,$\Theta_m$是三角函数,$Z_l$是指数函数。$k_{nl}$ 是由本征值方程确定的常数。$A_{nml}$ 是待定系数,由边界条件确定。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值