目录
参数高效微调:LoRA、Adapter与Prompt Tuning实战
5. LoRA、Adapter与Prompt Tuning的对比
随着大规模预训练语言模型(如BERT、GPT等)的普及和深度学习计算资源的消耗,如何高效微调这些巨型模型成为了研究的热点。传统的微调方式需要调整大量参数,导致显存消耗和计算开销较大,尤其在多任务学习或在资源受限的环境中,这种方式可能变得不切实际。为了解决这一问题,研究者们提出了几种参数高效的微调方法,如LoRA(Low-Rank Adaptation)、Adapter与Prompt Tuning,这些方法可以有效减少微调时的显存占用,甚至达到减少90%显存的效果。
本文将详细介绍这三种技术,并通过代码示例展示如何在实际应用中实现低成本的微调。
1. 为什么需要参数高效的微调方法?
在传统的微调方法中,通常会直接对预训练模型的所有参数进行更新,这样会导致以下问题:
- 显存消耗大:大规模模型的参数量非常庞大,更新所有参数会消耗大量显存。
- 训练效率低:每次训练都需要从头到尾处理整个模型的参数,导致训练时间过长。
- 计算资源浪费:对于单一任务或少量任务而言,微调整个模型可能是不必要的,浪费了计算资源。
因此,开发参数高效的微调方法,能够减少微调时的显存占用并提高训练效率。
2. LoRA(Low-Rank Adaptation)
LoRA(低秩适应)是一种高效的微调方法,其核心思想是通过在原始模型的层之间引入低秩矩阵,来减少微调时需要更新的参数量。LoRA通过将预训练模型中部分权重矩阵分解为低秩矩阵,使得只需对低秩矩阵进行更新,而不是整个模型。
2.1 原理
- 传统的微调方法会更新模型的所有权重参数,而LoRA将每一层的权重矩阵
分解为两个低秩矩阵
和
,即
,其中
和
是低秩矩阵,低秩矩阵的维度远小于原始矩阵。
- 在训练时,仅更新
和
,这大大减少了需要更新的参数数量。
公式:假设原始模型的权重矩阵为,LoRA通过低秩矩阵
和