参数高效微调:LoRA、Adapter与Prompt Tuning实战

目录

参数高效微调:LoRA、Adapter与Prompt Tuning实战

1. 为什么需要参数高效的微调方法?

2. LoRA(Low-Rank Adaptation)

2.1 原理

2.2 代码示例(LoRA微调)

3. Adapter

3.1 原理

3.2 代码示例(Adapter微调)

4. Prompt Tuning

4.1 原理

4.2 代码示例(Prompt Tuning)

5. LoRA、Adapter与Prompt Tuning的对比

6. 总结


随着大规模预训练语言模型(如BERT、GPT等)的普及和深度学习计算资源的消耗,如何高效微调这些巨型模型成为了研究的热点。传统的微调方式需要调整大量参数,导致显存消耗和计算开销较大,尤其在多任务学习或在资源受限的环境中,这种方式可能变得不切实际。为了解决这一问题,研究者们提出了几种参数高效的微调方法,如LoRA(Low-Rank Adaptation)、Adapter与Prompt Tuning,这些方法可以有效减少微调时的显存占用,甚至达到减少90%显存的效果。

本文将详细介绍这三种技术,并通过代码示例展示如何在实际应用中实现低成本的微调。

1. 为什么需要参数高效的微调方法?

在传统的微调方法中,通常会直接对预训练模型的所有参数进行更新,这样会导致以下问题:

  • 显存消耗大:大规模模型的参数量非常庞大,更新所有参数会消耗大量显存。
  • 训练效率低:每次训练都需要从头到尾处理整个模型的参数,导致训练时间过长。
  • 计算资源浪费:对于单一任务或少量任务而言,微调整个模型可能是不必要的,浪费了计算资源。

因此,开发参数高效的微调方法,能够减少微调时的显存占用并提高训练效率。


2. LoRA(Low-Rank Adaptation)

LoRA(低秩适应)是一种高效的微调方法,其核心思想是通过在原始模型的层之间引入低秩矩阵,来减少微调时需要更新的参数量。LoRA通过将预训练模型中部分权重矩阵分解为低秩矩阵,使得只需对低秩矩阵进行更新,而不是整个模型。

2.1 原理

  • 传统的微调方法会更新模型的所有权重参数,而LoRA将每一层的权重矩阵$W$分解为两个低秩矩阵$A$$B$,即W = A \cdot B,其中$A$$B$是低秩矩阵,低秩矩阵的维度远小于原始矩阵。
  • 在训练时,仅更新$A$$B$,这大大减少了需要更新的参数数量。

公式:假设原始模型的权重矩阵为W \in \mathbb{R}^{d \times d},LoRA通过低秩矩阵$A \in \mathbb{R}^{d \times r}$

### Adapter 微调概述 Adapter微调是一种参数高效的迁移学习方法,通过在预训练模型中插入小型适配器模块来适应特定下游任务。这种方法允许保留大部分原始权重不变,仅更新少量新引入的参数[^1]。 ### 实现方法 为了实现Adapter微调,在原有网络结构基础上增加额外的小型神经网络作为adapter层。这些adapter通常由一层或多层全连接层组成,并放置于编码器各层内部的关键位置。具体来说: - **架构设计**:选择合适的层次加入adapter; - **初始化策略**:采用随机初始化或其他更优方案; - **正则化处理**:防止过拟合现象发生; ```python class BertModelWithAdapters(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) # Add adapters to each layer of the transformer encoder for i in range(len(self.bert.encoder.layer)): adapter_layer = nn.Sequential( nn.Linear(config.hidden_size, 64), nn.ReLU(), nn.Linear(64, config.hidden_size) ) setattr(self.bert.encoder.layer[i], 'adapter', adapter_layer) def forward(...): outputs = self.bert(...) ... ``` ### 教程指南 对于希望深入了解并掌握这一技术的研究人员而言,建议按照如下路径逐步深入研究: - 阅读经典论文《Parameter-Efficient Transfer Learning for NLP》以理解理论基础; - 学习开源项目Hugging Face Transformers中的`peft`库文档,该库提供了多种类型的adapters实现方式; - 尝试基于现有框架完成简单的实验案例,比如情感分类或命名实体识别等自然语言处理任务; ### 最佳实践 当应用Adapter微调时,需注意以下几点最佳实践经验: - 对不同规模的数据集合理设置超参,包括但不限于batch size、learning rate等; - 使用早停法(Early Stopping)监控验证集性能变化趋势,及时终止效果不佳的试验; - 定期保存checkpoint以便后续恢复训练过程或对比分析多个版本间的差异;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一碗黄焖鸡三碗米饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值