【大模型01】参数高效微调之LoRA

一、技术理念

LoRA(Low-Rank Adaptation) 是一种用于自然语言处理和机器学习模型的技术,旨在通过低秩矩阵的适应来提高模型的效率和性能。以下是LoRA的主要原理:

  1. 低秩矩阵分解:LoRA的核心思想是将原始的大规模矩阵分解为两个低秩矩阵的乘积。这两个低秩矩阵的维度远小于原始矩阵,因此可以大幅减少模型的参数数量和计算复杂度。

  2. 参数更新:在训练过程中,传统的全参数更新方法会导致计算量和存储需求的显著增加。LoRA通过只更新低秩矩阵中的参数,避免了对原始大规模矩阵的直接更新,从而减小了计算负担。

  3. 保持性能:虽然LoRA减少了参数的数量,但其设计确保了模型性能的保持或接近原始模型的水平。通过精细调整低秩矩阵的参数,可以在降低计算复杂度的同时,保持模型的预测准确性和泛化能力。

  4. 应用领域:LoRA广泛应用于Transformer架构中的预训练和微调阶段,尤其在大规模语言模型(如GPT-3、BERT等)的训练中,可以显著提升模型训练的效率和资源利用率。

  5. 数学原理:具体而言,LoRA利用了线性代数中的矩阵分解技术。假设一个矩阵 W W W的秩较高,难以直接处理。LoRA将其表示为两个低秩矩阵 A A A B B B的乘积,即 W ≈ A B W \approx AB WAB,其中 A A A B B B的秩远小于 W W W。通过这种方式,优化问题转化为对 A A A B B B的优化,从而显著减少了需要处理的参数数量。

通过这些原理,LoRA为大规模模型的训练提供了一种高效、资源节约的解决方案,特别适合在资源有限的环境中部署和使用复杂的机器学习模型。

二、数学推导

LoRA(Low-Rank Adaptation)的数学原理主要基于矩阵的低秩分解。以下是详细的数学推导:

1. 背景

在深度学习模型中,特别是Transformer模型中,参数矩阵(如权重矩阵)通常非常大。这些大矩阵的训练和推理计算量巨大,存储开销也很高。LoRA通过将这些大矩阵近似为两个低秩矩阵的乘积来解决这个问题。

2. 矩阵低秩分解

假设我们有一个原始的权重矩阵 W ∈ R m × n W \in \mathbb{R}^{m \times n} WRm×n,我们希望通过低秩分解将其表示为两个低秩矩阵的乘积:

W ≈ A B W \approx AB WAB

其中, A ∈ R m × r A \in \mathbb{R}^{m \times r} ARm×r B ∈ R r × n B \in \mathbb{R}^{r \times n} BRr×n,且 r ≪ min ⁡ ( m , n ) r \ll \min(m, n) rmin(m,n)。这里的 r r r是一个远小于 m m m n n n的秩值。

3. 低秩分解的优化

在LoRA中,我们并不直接优化原始的权重矩阵 W W W,而是优化 A A A B B B这两个低秩矩阵。这样可以显著减少需要优化的参数数量,从而降低计算复杂度。

4. 权重更新

在训练过程中,原始模型的权重更新可以表示为:

W ← W + Δ W W \leftarrow W + \Delta W WW+ΔW

在LoRA中,我们假设权重变化 Δ W \Delta W ΔW可以表示为两个低秩矩阵的乘积:

Δ W = A B \Delta W = AB ΔW=AB

于是权重更新公式变为:

W ← W + A B W \leftarrow W + AB WW+AB

5. 参数数量减少

假设原始矩阵 W W W m × n m \times n m×n个参数,而低秩矩阵 A A A B B B分别有 m r mr mr r n rn rn个参数。这样,总的参数数量从原始的 m n mn mn降低到 m r + r n mr + rn mr+rn。由于 r ≪ min ⁡ ( m , n ) r \ll \min(m, n) rmin(m,n),参数数量大幅减少。

6. 优化过程

在实际训练过程中,使用反向传播算法对 A A A B B B进行优化。假设损失函数为 L L L,则我们需要计算 A A A B B B的梯度,并进行梯度下降:

A ← A − η ∂ L ∂ A A \leftarrow A - \eta \frac{\partial L}{\partial A} AAηAL B ← B − η ∂ L ∂ B B \leftarrow B - \eta \frac{\partial L}{\partial B} BBηBL

其中, η \eta η是学习率。

7. 实际应用中的步骤

  1. 初始化:初始化低秩矩阵 A A A B B B
  2. 前向传播:计算前向传播中的权重更新 W + A B W + AB W+AB
  3. 反向传播:计算损失函数 L L L,并通过反向传播计算梯度。
  4. 参数更新:更新低秩矩阵 A A A B B B的参数。
  5. 迭代:重复上述步骤,直到收敛。

总结

LoRA通过将原始的高秩矩阵分解为两个低秩矩阵的乘积,实现了参数数量和计算复杂度的显著降低。这种方法特别适合大规模模型的训练和推理,能够在保证模型性能的前提下,提高计算效率和资源利用率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值