记录

列表

EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs    ISWC2018

Automated Template Generation for Question Answering WWW2017

Improving Multi-hop Question Answering over Knowledge Graphs using KGE ACL2020

 

EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs 

它将实体链接和关系链接作为一个联合任务来执行

第一种策略是将联合实体和连接任务的关系形式化,作为广义旅行推销员问题的一个实例
(GTSP)。第二种策略使用机器学习来利用知识图中节点之间的连接密度。

1.浅层分析

EARL 用 SENNA [3] 做为关键词提取器,并且去除停止词。

2.E/R预测

预测关键词的每个实体是不是都是一个关系或实体。用基于LSTM的字符嵌入网络

The network is trained using labels for entity and relation in the knowledge graph. For handling out of vocabulary words [17], and also to encode the knowledge graph structure in the network, we take a multi-task learning approach with hard parameter sharing. Our model is trained on a custom loss given by: E = (1 − α) ∗ EBCE + α ∗ EED (1) where, EBCE is the binary cross entropy loss for the learning objective of a phrase being an entity or a relation and EEd is the squared eucledian distance between the predicted embedding and the correct embedding for that label. The value of α is empirically selected as 0.25. We use pre-trained label embeddings from RDF2Vec [18] which are trained on knowledge graphs. RDF2Vec provides latent representation for entities and relations in RDF graphs. It efficiently captures the semantic relatedness between entities and relations. We use a hidden layer size of 128 for the LSTM, followed by two dense layers of sizes 512 and 256 respectively. A dropout value of 0.5 is used in the dense layers. The network is trained using Adam optimizer [9] with a learning rate of 0.0001 and a batch size of 128.

3.产生候选名单

从浅层分析器识别出的关键词中产生候选名单。创造了一个URI-label对的Elasticserach初值。

The output of these pre-processing steps are (i) set of keywords from the question, (ii) every keyword is identified either as relation or entity, (iii) for every keyword there is a set of candidate URIs from the knowledge graph.

消岐

4.2 Using GTSP for Disambiguation

4.3 Using Connection Density for Disambiguation

 

 

 

Knowledge Base Question Answering via Encoding of Complex Query Graphs

在本节中,我们将介绍解决复杂KBQA的方法。首先,我们使用分级生成方法生成候选查询图(第2.1节)。其次,我们使用深度神经网络测量问题和每个查询图之间的语义相似性(第2.2节)。然后介绍了一种用于实体链接丰富的集成方法(章节2.3),最后讨论了该任务的预测和参数学习步骤(章节2.4)。

2.1生成候选查询图

利用查询图中的隐式类型信息和知识库中的时间间隔信息,四种语义限制:实体、类型、时间和顺序限制。

step1:Focus linking.从问题中提取(mention,focus node)对实体链接用SMART工具提取(mention,entity)对于类型链接,我们将每种类型与问题中提到的uni-、bi-和tri-gram结合起来,选出每对中单词嵌入相似性最高的前10对(mention, type)。对于时间链接,我们通过简单匹配year正则表达式来提取提到的时间。对于序数链接,我们利用一个预定义的最高级词列表,通过匹配最高级词或“序数+最高级”模式识别

Step 2: Main path generation

Step 3: Attaching entity constraints.DFS通过1跳谓词搜索到主路径的多个实体约束的组合。

Step 4: Type constraint generation.Our improvement in this step is to filter type constraints using implicit types

Step 5: Time and ordinal constraint generation.时间约束是2跳谓词序列,第二个是虚拟谓词,序号约束也是2跳,第二个表示是升序降序。我们的改进是利用成对时间谓词来表示更准确的时间约束

2.2 NN-based Semantic Matching Model

该方法首次将 Query Graph 进行语义编码,计算与 Query 间的相关性程度,并以此作为匹配特征训练模型。该方法在 ComplexQuestions 数据集上的表现优于 MultiCG 的方法,但是依然不能很好地利用神经网络模型处理显隐式时间约束等复杂问题。

 

Formal Query Generation for Question Answering over Knowledge Bases

基于知识图谱的QG。我们提出了SPARQL查询生成器(SQG),它是一种用于QA管道的模块化查询生成器,采用基于Tree-LSTM的候选查询排序机制。

Pretrained Transformers for Simple Question Answering over Knowledge Graphs

知识图上简单问题回答的预训练transformer,研究了一种基于transformer的方法同时完成实体跨度检测和关系预测,将前者看成一个一个分类问题,用两个分类器头预测实体跨度的开始和结束位置,后者被认为是一个序列分类任务,在序列分类设置中使用BERT

 

Difficulty-controllable Multi-hop Question Generation From Knowledge Graphs

提出了一种基于端到端神经网络的自动生成复杂多跳问题的方法,基于Transformer架构,估计给定子问题的难度水平,生成不同难度水平的问题。它将一个子图视为一个图,而不是任意将其线性化为一个三元组序列,属于编码器-解码器的方法

 

TEQUILA: Temporal Question Answering over Knowledge Bases

https://zhuanlan.zhihu.com/p/59775064

提出了一个专门解决问题中时间问题的系统TEQUILA,它通过检测是否有特殊词来判断一个问题是否具有时态问题,分解问题并重写子问题,检索子问题的候选答案(使用QUINT和AQQU),最后进行时间推理,将前一阶段的结果合并调和为最终答案

Message Passing for Complex Question Answering over Knowledge Graphs

https://blog.csdn.net/misite_J/article/details/104246653

运用置信分数在图结构上定位答案实体,一系列稀疏矩阵乘法在LC-QUAD上SOTA

提出了基于无监督消息传递的算法QAmp,使用文本相似性和图结构进行有效推理,特别关注问题解释和关系推理,亮点是对问句模式的定义和消息过程中的矩阵代数运算

问题解析分两步:解析是将问题类型视为一个多分类问题,n跳视为序列标注问题,下一步为解析

Answering Questions with Complex Semantic Constraints on Open Knowledge Bases   CIKM2015

建议使用n元组断言(具有任意数量参数的断言)和n元组open KB (nOKB),后者是n元组断言的开放知识库

本文提出了一种基于nOKB的新型KBQA系统TAQA,问题解析部分使用依赖解析,答案抽取部分基于队列,亮点在于扩展三元组到n元组

Complex Sequential Question Answering: Towards Learning to Converse Over Linked Question Answer Pairs with a Knowledge Graph AAAI2018

 

JEC-QA: A Legal-Domain Question Answering Dataset

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值