使用DeepSeek作为基座训练自定义大模型,需要从模型选择、数据准备、训练优化到部署全流程规划。以下是结合官方资源与实战经验的详细指南:
一、模型选择与获取
1. 确认许可与合规性
- 开源协议:DeepSeek采用MIT许可,允许商用、修改和再分发,但需保留原始版权声明。
- 合规要求:需遵守《生成式人工智能服务管理暂行办法》,训练数据需通过安全评估,避免敏感内容。
2. 模型版本选择
模型版本 | 参数规模 | 显存需求 | 适用场景 |
---|---|---|---|
DeepSeek-7B | 70亿 | 16GB(FP16) | 本地开发/小场景定制 |
DeepSeek-16B | 160亿 | 32GB(FP16) | 企业级中等规模任务 |
DeepSeek-32B | 320亿 | 64GB(FP16) | 复杂推理/长文本理解 |
DeepSeek-70B | 700亿 | 128GB(FP16) | 高精度需求/学术研究 |
3. 模型获取方式
- 官方下载:访问DeepSeek开发者平台,通过API Key获取模型权重。
- 开源社区:部分版本(如7B)可在Hugging Face Hub或GitHub获取。
二、数据准备与处理
1. 数据收集策略
- 领域数据:聚焦目标场景(如医疗、金融),收集文本、对话、文档等结构化/非结构化数据。
- 公开数据集:可补充C4、RedPajama等通用数据,但需注意版权问题。
- 数据量建议:7B模型需至少10万条高质量样本,16B以上建议百万级样本。
2. 数据清洗与格式化
# 示例:清洗文本并转换为JSONL格式 import json import re def clean_text(text): text = re.sub(r'\s+', ' ', text).strip() # 去除多余空格 text = re.sub(r'[