一步一步使用DeepSeek作为基座训练自定义大模型

使用DeepSeek作为基座训练自定义大模型,需要从模型选择、数据准备、训练优化到部署全流程规划。以下是结合官方资源与实战经验的详细指南:

一、模型选择与获取

1. 确认许可与合规性
  • 开源协议:DeepSeek采用MIT许可,允许商用、修改和再分发,但需保留原始版权声明。
  • 合规要求:需遵守《生成式人工智能服务管理暂行办法》,训练数据需通过安全评估,避免敏感内容。
2. 模型版本选择
模型版本 参数规模 显存需求 适用场景
DeepSeek-7B 70亿 16GB(FP16) 本地开发/小场景定制
DeepSeek-16B 160亿 32GB(FP16) 企业级中等规模任务
DeepSeek-32B 320亿 64GB(FP16) 复杂推理/长文本理解
DeepSeek-70B 700亿 128GB(FP16) 高精度需求/学术研究
3. 模型获取方式
  • 官方下载:访问DeepSeek开发者平台,通过API Key获取模型权重。
  • 开源社区:部分版本(如7B)可在Hugging Face Hub或GitHub获取。

二、数据准备与处理

1. 数据收集策略
  • 领域数据:聚焦目标场景(如医疗、金融),收集文本、对话、文档等结构化/非结构化数据。
  • 公开数据集:可补充C4、RedPajama等通用数据,但需注意版权问题。
  • 数据量建议:7B模型需至少10万条高质量样本,16B以上建议百万级样本。
2. 数据清洗与格式化
 
  1. # 示例:清洗文本并转换为JSONL格式
    import json
    import re
    
    def clean_text(text):
    text = re.sub(r'\s+', ' ', text).strip() # 去除多余空格
    text = re.sub(r'[
<think>好的,我现在需要回答用户关于DeepSeek和AnythingLLM之间关系的问题。首先,我需要确认这两个项目的背景和功能。 DeepSeek,我记得是深度求索公司开发的,他们专注于AGI,特别是大模型领域。他们有一个比较有名的模型DeepSeek-R1-Lite-Preview,可能用在智能助手之类的场景里。而AnythingLLM听起来像是一个LLM应用框架,可能允许用户自定义和部署自己的大模型应用,比如结合私有数据或者特定功能。 接下来,用户问的是它们之间的关系。可能的关系包括是否同一公司开发,是否有技术依赖,或者是互补产品。根据我的知识,深度求索公司主要开发基础模型,而AnythingLLM可能属于应用层的工具,由不同团队开发。所以它们可能没有直接隶属关系,而是各自独立,但可能在应用中可以结合使用,比如用DeepSeek模型作为AnythingLLM的后端。 需要验证这两者是否属于同一公司。假设AnythingLLM不是深度求索的产品,那么它们的关系可能是第三方应用支持集成DeepSeek模型。例如,AnythingLLM允许用户选择不同的模型,包括DeepSeek模型,作为其解决方案的一部分。 还要考虑用户可能的实际应用场景。用户可能想知道是否可以在AnythingLLM中使用DeepSeek模型,或者是否有合作。如果存在这样的集成,那么它们就是技术合作关系;否则,就是独立的两个项目。 总结起来,可能需要说明两者分属不同团队或公司,但技术上可以结合使用,或者没有任何直接关系。需要确保回答准确,避免错误信息。如果存在不确定性,应该指出需要进一步验证,但根据现有信息,给出可能的解释。</think>DeepSeek(深度求索)与AnythingLLM是两个独立但存在潜在协同关系的技术项目,具体关系可以从以下三个维度解析: **1. 技术定位差异** - **DeepSeek**:由国内AI公司深度求索开发的大模型基座,定位为通用人工智能基础设施 - 典型产品:DeepSeek-R1系列(7B/67B参数版本) - 核心能力:多轮对话、复杂推理、代码生成 - **AnythingLLM**:开源的LLM应用框架,定位为私有化部署解决方案 - 核心功能:支持本地知识库接入、多模型托管、RAG增强 **2. 潜在协同场景** - **模型供给**:AnythingLLM可集成DeepSeek作为推理引擎 - 技术实现:通过OpenAI兼容API对接DeepSeek-Inference服务 - 应用案例:企业使用DeepSeek-7B作为基础模型,在AnythingLLM中加载内部知识库 - **能力互补**:DeepSeek提供底层智能,AnythingLLM构建应用层功能 - 典型组合:DeepSeek的代码生成能力 + AnythingLLM的文档解析功能 **3. 开源生态关系** - **DeepSeek**:部分模型开源(如DeepSeek-MoE-16b-chat) - 开源协议:Apache 2.0(商用友好) - **AnythingLLM**:MIT协议的全栈开源项目 - 技术栈:Node.js + Electron构建跨平台客户端 当前实际应用中,已有开发者通过以下方式实现两者整合: ```python # AnythingLLM配置DeepSeek API示例 from anythingllm import Workspace workspace = Workspace( llm_config={ "provider": "deepseek", "api_key": "sk-xxx", "endpoint": "https://api.deepseek.com/v1/chat/completions" }, embedding_model="bge-large-zh" ) ``` 这种组合特别适用于需要兼顾中文理解能力与数据隐私保护的场景(如金融行业内部知识库系统)。两者的结合体现了当前LLM生态中"基座模型+应用框架"的分层协作趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔四的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值