体验Hugging Face 平台上的DeepSite,实现氛围编程(Vibe coding)

介绍

DeepSite 是 Hugging Face 平台上一个流行的应用程序,它允许用户通过自然语言描述生成代码,实现氛围编程(Vibe coding)‌。

DeepSite 使用了最新版本的 DeepSeek-V3-0324 模型,支持用户通过自然语言描述来生成代码,无需手动编写复杂的代码‌

实践

友情提醒,需要科学上网。

非常好的一点,不需要登录HuggingFace也能体验。只是最后发布的时候需要登录。

打开网址

网址:DeepSite - a Hugging Face Space by enzostvs

需要科学上网才行。如果没有科学上网,那么Huggingface的镜像站HF-Mirror是不支持的,会提醒:由于流量过大,本站暂不支持访问 Spaces 空间,可前往 Hugging Face 官网查看。

写需求

直接写需求,比如:写一个集和MCP和大模型的交流网站

等待片刻,就完成了,效果还是不错的。页面有模型库,交流区等栏目,点击相应栏目,会跳转到相应位置。

再修改需求,让它添加注册部分(还不太会使用,所以添加注册部分后主页信息丢失了,后来选择回退到第一步解决)

发布

点击deploy进行发布。设定一个名字,比如mcpcenter

发布后,就可以通过名字来访问了,比如我发布到:DeepSite - a Hugging Face Space by enzostvs

当前这个页面还很简陋,离能用还有些距离。但是可以快速做出网站原型,还是有些作用的。比如命令:把页面整体配色改为红色系 。

几分钟后页面就改成红色系,效果相当好。

来个炸裂效果的app

提示词:帮我建一个类似“雷电”打飞机的游戏页面,使用html5,飞机可以左右移动,景物和障碍从上向下滚动

效果炸裂,它真的做出来了!

但是现在它击中障碍后,会停,所以增加提示词:击中障碍得分后,程序不停止

不行,换提示词:击中障碍得分后,程序不停止

还是不行。

最终提示词:帮我建一个类似“雷电”打飞机的游戏页面,使用html5,飞机可以左右移动,景物和障碍从上向下滚动。击中障碍物后,障碍物消失,并得10分。100分通关,输出“恭喜通关!”

好了,用上面的prompt现在终于好了!

打起来很爽啊,上来就是三连发的子弹,大家都来玩啊: https://huggingface.co/spaces/skywalk163/mcpcenter

有个问题,新的应用冲了原来的应用.....,这个怎么解决啊?

有知道的小伙伴请在下面留言哈!

总结下

DeepSite真的太棒了,用来做软件的前期功能、界面辅助设计,可以大大提高效率。

但是做大规模的应用,还有点吃力。

### 使用Hugging Face实现视觉问答(VQA) 为了利用Hugging Face库和模型实施视觉问答系统,可以采用预训练的多模态模型来处理图像与文本输入。这类方法能够通过比较新旧数据样本来决定标签归属,而无需大量特征-标签对[^1]。 具体来说,在构建基于Hugging Face Transformers库的VQA应用时,通常会选择适合的任务特定架构,比如BLIP或ViLT等专为联合理解图像和文本设计的模型。这些模型可以在少量样本条件下有效学习并泛化到未见过的数据上。 下面是一个简单的Python脚本示例,展示了如何加载预训练好的VQA模型并通过它来进行预测: ```python from PIL import Image import requests from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' # 替换为目标图片链接 raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "What is the man doing?" # 输入想要询问的问题 inputs = processor(raw_image, question, return_tensors="pt") outputs = model.generate(**inputs) print(processor.decode(outputs[0], skip_special_tokens=True)) ``` 此代码片段首先导入必要的包,并定义了一个函数用于获取远程存储的测试用图;接着初始化处理器对象以及对应的VQA模型实例;最后准备待分析的对象及其关联问题作为输入传递给模型以获得答案输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值