Pandas学习笔记---001

Pandas学习笔记—001

更多博客: MyBlog

1. 数据类型

Series:带标签的一维数组
DataFrame:带标签的,大小可变的,二维异构表格


import numpy as np
import pandas as pd
# 生成Series
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

2. 使用技巧

1. sort_indedx和sort_value

sort_index(axis=0, level=None, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’, sort_remaining=True, ignore_index: bool = False,)
axis:0按行名排序,1按列名排序
ascending:默认True升序排列;False降序排列
inplace:默认False,否则排序之后的数据直接替换原来的数据框
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心
na_position:缺失值默认排在最后{“first”,“last”}


sort_values(by, axis=0, ascending=True, inplace=False, kind=“quicksort”, na_position=“last”, ignore_index=False)
by: str or list of str;如果axis=0,那么by=“列名”;如果axis=1,那么by=“行名” # 必须给出参数

df = pd.DataFrame({'b':[1,2,3,2],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3]) 
    b   a   c
2   1   4   1
0   2   3   3
1   3   2   8
3   2   1   2
按b列升序排序: df.sort_values(by='b') # 等同于df.sort_values(by='b',axis=0)
先按b列降序,再按a列升序排序: df.sort_values(by=['b','a'],axis=0,ascending=[False,True]) # 等同于df.sort_values(by=['b','a'],axis=0,ascending=[False,True])      
按行3升序排列: df.sort_values(by=3,axis=1) # 必须指定axis=1     
按行3升序,0降排列:  df.sort_values(by=[3,0],axis=1,ascending=[True,False])

2. 对于无效数据的处理

空值:在pandas中的空值是""
缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可
相关函数: df.dropna()、df.fillna()、df.isnull()、df.isna()

函数: df.dropna(axis=0, how=‘any’, thresh=None, subset=None, inplace=False)
删除表中全部为NaN的: df.dropna(axis=0,how=‘all’)
删除表中含有任何NaN的: df.dropna(axis=0,how=‘any’)
删除表中全部为NaN的: df.dropna(axis=1,how=‘all’)
删除表中含有任何NaN的: df.dropna(axis=1,how=‘any’)
thresh(int): axis中至少有int个非缺失值,否则删除
subset: array-like, optional,Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.


函数: df.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)
method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None 说明用前面数据‘ffill’/'pad’替换后面NaN数据 ‘backfill’/‘bfill’则相反
ne}, default None 说明用前面数据‘ffill’/'pad’替换后面NaN数据 ‘backfill’/'bfill’则相反

《Python学习笔记》是由皮大庆编写的一本关于Python语言学习的教材。在这本书中,作者详细介绍了Python语言的基础知识、语法规则以及常用的编程技巧。 首先,作者简要介绍了Python语言的特点和优势。他提到,Python是一种易于学习和使用的编程语言,受到了广大程序员的喜爱。Python具有简洁、清晰的语法结构,使得代码可读性极高,同时也提供了丰富的库和模块,能够快速实现各种功能。 接着,作者详细讲解了Python的基本语法。他从变量、数据类型、运算符等基础知识开始,逐步介绍了条件语句、循环控制、函数、模块等高级概念。同时,作者通过大量的示例代码和实践案例,帮助读者加深对Python编程的理解和应用。 在书中,作者还特别强调了编写规范和良好的编程习惯。他从命名规范、注释风格、代码缩进等方面指导读者如何写出清晰、可读性强的Python代码。作者认为,良好的编程习惯对于提高代码质量和提高工作效率非常重要。 此外,作者还介绍了Python的常用库和模块。他提到了一些常用的库,如Numpy、Pandas、Matplotlib等。这些库在数据处理、科学计算、可视化等领域有广泛的应用,帮助读者更好地解决实际问题。 总的来说,《Python学习笔记》是一本非常实用和全面的Python学习教材。通过学习这本书,读者可以系统地学习和掌握Python编程的基础知识和高级应用技巧,为以后的编程学习和工作打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值