“人工智能如何发展出像人类具备逻辑、意识和推理的认知能力,是人工智能研究一直在探索的方向。目前来看,通过大规模数据训练超大参数量的巨量模型,被认为是非常有希望实现通用人工智能的一个重要方向。”王恩东院士认为,随着巨量模型的兴起,巨量化已成为未来人工智能发展非常重要的一个趋势。
目前,全球知名的AI领先公司在巨量模型上都予以重兵投入,谷歌、微软、英伟达、浪潮、智源研究院、百度、阿里等公司相继推出了各自的巨量模型。
巨量化的一个核心特征就是模型参数多、训练数据量大。以浪潮人工智能研究院开发的全球最大规模的中文AI巨量模型“源1.0”为例,其参数量高达2457亿,训练数据集规模达到5000GB。相比GPT3模型的1750亿参数量和570GB训练数据集,“源1.0”的参数规模增加了40%,训练数据集规模增加近10倍。
此外,巨量化也表现在模型应用规模大。互联网头部公司的AI开放平台已经吸引了超百万的AI开发者,这些AI开放平台每天承载着数万亿次的调用量,数百万小时的语音识别,超过百亿张图像识别,超过万亿句自然语言理解等等。如此巨量的调用对算力中心的应用支撑能力带来了极大的挑战。
以巨量模型为代表的巨量化是AI发展的重大趋势
最新推荐文章于 2024-10-10 11:04:45 发布
人工智能正通过大规模数据训练超大参数量的巨量模型来发展类似人类的逻辑和推理能力。王恩东院士指出,巨量化是未来AI发展的重要趋势,各大科技公司如谷歌、微软等已推出各自的巨量模型。这些模型参数多、训练数据量大,如浪潮的‘源1.0’模型参数量高达2457亿,应用规模巨大,对算力中心提出极高要求。
摘要由CSDN通过智能技术生成