备战秋招60天算法挑战,Day31

题目链接: https://leetcode.cn/problems/house-robber/

视频题解: https://www.bilibili.com/video/BV1RwvoeaENG/

LeetCode 198. 打家劫舍

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

举个例子:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

视频题解

打家劫舍

思路来源

思路来源

知识回顾

动态规划是一种通过将原问题分解为子问题来求解复杂问题的算法思想。它通常用于求解最优化问题,例如最长公共子序列、背包问题等。动态规划的核心思想是将原问题分解为若干个子问题,通过求解子问题的最优解推导出原问题的最优解。可以通过两点来判断一个问题能不能通过动态规划来解,一是该问题是否存在递归结构,二是对应的子问题能否记忆化。动态规划可以通过带备忘录的自上而下的递归自下而上的迭代来分别实现。由于递归需要用到栈来实现,一些语言对递归的深度是有限制的,所以自下而上的迭代是动态规划的最佳实现方式

思路解析

本题是一道经典的动态规划问题,要找到解决动态规划问题的两个突破点:推导出状态转移公式边界条件处理

首先定义dp[n]表示总共有n间房所能偷到的最高金额。

对于nums=[1, 2, 3, 1]其所有可能的偷盗路线如下:

根节点到叶子节点就是一条偷盗路线,每个节点表示偷到的总金额,对于上面的例子dp[4] = 4

状态转移公式需要分两种情况讨论:

  • 偷盗路线包含第4间房nums[3]),根据规则这个时候第3间房nums[2])一定是没有被偷的,那么前2间房偷到的最大金额加上第4间房偷到的金额有可能是前4间房偷的最大金额dp[4] = dp[2] + nums[3]
  • 偷盗路线不包含第4间房nums[3]),这个时候前3间房偷到的最大金额有可能也是前4间房偷的最大金额dp[4] = dp[3]

上面两种情况选取最大值就可以得到4间房偷到的最大金额dp[4]=max(dp[2] + nums[3], dp[3]);

扩展到一般情况dp[n]可以分解为dp[n-1]dp[n-2]两个子问题的组合,得到状态转移公式

dp[n] = max{dp[n-2] + nums[n-1], dp[n-1]}

其中dp[n-2] + nums[n-1]表示偷第n间房整条路线可以偷到的最大金额。 dp[n-1]表示不偷第n间房整条路线可以偷到的最大金额。

对于边界条件 dp[0] = 0dp[1] = nums[0]dp[2] = max{nums[0], nums[1]}

C++ 代码

class Solution {
public:
    int rob(vector<int>& nums) {
        int nums_len = nums.size();
        vector<int> dp(nums_len + 1, 0);
        if (nums_len > 0) {
            //边界条件
            dp[1] = nums[0];
        }
        if (nums_len > 1) {
            //边界条件
            dp[2] = max(nums[0], nums[1]);
        }
        for (int i = 3; i < nums_len + 1; ++i) {
            //状态转移公式
            dp[i] = max(dp[i-1], dp[i-2] + nums[i-1]);
        }
        return dp[nums_len];
    }
};

java代码

class Solution {
    public int rob(int[] nums) {
        int nums_len = nums.length;
        int[] dp = new int[nums_len + 1];
        
        if (nums_len > 0) {
            // 边界条件
            dp[1] = nums[0];
        }
        if (nums_len > 1) {
            // 边界条件
            dp[2] = Math.max(nums[0], nums[1]);
        }
        
        for (int i = 3; i < nums_len + 1; ++i) {
            // 状态转移公式
            dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i-1]);
        }
        
        return dp[nums_len];
    }
}

python代码

class Solution:
    def rob(self, nums: List[int]) -> int:
        nums_len = len(nums)
        dp = [0] * (nums_len + 1)
        
        if nums_len > 0:
            # 边界条件
            dp[1] = nums[0]
        if nums_len > 1:
            # 边界条件
            dp[2] = max(nums[0], nums[1])
        
        for i in range(3, nums_len + 1):
            # 状态转移公式
            dp[i] = max(dp[i-1], dp[i-2] + nums[i-1])
        
        return dp[nums_len]

复杂度分析

时间复杂度: 只需要遍历一遍数组nums,所以时间复杂度为O(n)nnums的长度。

空间复杂度: 需要借助一个dp数组,空间复杂度为O(n)nnums的长度。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值