深度学习
文章平均质量分 56
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matlab【独家原创】基于BiTCN-BiGRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于BiTCN-BiGRU和SHAP的可解释性分类预测模型。该模型采用双向时间卷积网络结合双向门控循环单元结构,提供数据多输入单输出预测功能。针对SHAP分析速度慢的问题,程序提供了正常版和提速版两种计算方案。模型通过SHAP方法量化各特征对决策的影响程度,实现预测性能与解释能力的统一。代码支持MATLAB 2020b及以上版本,包含完整中文注释,可直接替换Excel数据集运行,适用于二分类和多分类任务,并附带测试数据集和详细使用说明。原创 2026-02-05 23:24:04 · 318 阅读 · 0 评论 -
Matlab【独家原创】基于BiTCN-GRU-SHAP可解释性分析的分类预测
本文介绍了一种基于BiTCN-GRU和SHAP的可解释性分类预测模型。该模型结合双向时间卷积网络与门控循环单元,实现多输入单输出的分类预测,并利用SHAP方法提供决策解释。为解决SHAP分析速度问题,程序提供正常版和提速版两种计算文件。模型在保持高预测精度的同时,通过SHAP量化各特征贡献,直观展示决策逻辑。代码兼容二分类和多分类任务,附带测试数据集,支持MATLAB 2020b及以上版本运行。原创 2026-02-05 23:23:20 · 245 阅读 · 0 评论 -
Matlab【独家原创】基于TCN-BiGRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-BiGRU神经网络和SHAP可解释性分析的数据分类预测模型。该模型采用时间卷积网络结合双向门控循环单元架构,通过SHAP方法提供决策过程的解释分析。为提升计算效率,程序提供两种SHAP计算版本(标准版和提速版)。代码采用MATLAB编写(需2020b及以上版本),支持二分类和多分类任务,包含详细中文注释。运行结果展示包括分类效果图、优化过程图和混淆矩阵等可视化分析。该方案实现了预测精度与模型可解释性的平衡,适用于各类数据分析需求。原创 2026-02-05 23:22:29 · 416 阅读 · 0 评论 -
Matlab【独家原创】基于TCN-GRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-GRU神经网络结合SHAP可解释性分析的多输入单输出分类预测模型。该程序提供两种SHAP计算版本(正常版和提速版),并附带详细使用说明。模型采用MATLAB 2020b及以上版本运行,支持二分类和多分类任务,具有清晰的中文注释和高质量代码。运行结果包含分类效果图、迭代优化图和混淆矩阵图等可视化展示。文章还提供了测试数据集,适合机器学习初学者使用。该混合建模框架实现了预测精度与解释能力的统一,为模型优化和决策支持提供了科学依据。原创 2026-02-05 23:21:33 · 249 阅读 · 0 评论 -
Matlab【独家原创】基于TCN-LSTM-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-LSTM神经网络结合SHAP可解释性分析的数据分类预测模型。该模型采用时间卷积网络与长短期记忆网络的混合架构,针对SHAP分析速度慢的问题提供了正常版和提速版两种计算方案。文章阐述了SHAP方法的理论基础及其在模型可解释性方面的优势,能够量化各特征对预测结果的贡献度。代码支持MATLAB 2020b及以上版本,适用于二分类和多分类任务,包含分类效果图、优化迭代图等可视化结果。程序附带测试数据集,具有中文注释,便于使用者快速上手。原创 2026-02-05 23:18:46 · 316 阅读 · 0 评论 -
【独家原创】基于K均值聚类+KNN-LSTM-RF数据填补的时序数据清洗模型 Matlab代码
摘要:本文介绍了一种基于K均值聚类+KNN-LSTM-RF的多模型协同数据清洗Matlab代码。创新性地融合了四类异常检测方法(3σ、滑动窗口Z-score、IQR和一阶差分),通过组合策略将检测精度提升至94.3%。采用KNN(40%)+LSTM(30%)+RF(30%)的自适应加权填补架构,相比单一模型显著降低误差。代码具有距离度量自适应、动态优化聚类数等亮点,提供完整的数据质量视图和异常分析功能,适用于风电等时序数据的智能化清洗。代码附带测试数据集,中文注释清晰,支持Matlab 2020b及以上版本原创 2026-02-03 23:53:06 · 931 阅读 · 0 评论 -
基于LSTM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一个基于LSTM神经网络和SHAP可解释性分析的多输入多输出回归预测模型。该模型通过结合机器学习与SHAP解释框架,在保证预测精度的同时增强了模型可解释性。代码采用MATLAB实现,包含中文注释,支持直接替换Excel数据集运行,并提供R2、MAE等多种评价指标。适用于需要模型预测与解释并重的应用场景,特别适合机器学习初学者使用。原创 2026-02-01 23:34:04 · 515 阅读 · 0 评论 -
Matlab【独家原创】基于BiTCN-BiLSTM-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于BiTCN-BiLSTM神经网络结合SHAP可解释性分析的多输入单输出分类预测模型。该模型通过双向时间卷积网络和双向长短期记忆网络的结合提升预测性能,并利用SHAP方法提供模型决策过程的解释。程序包含两种SHAP计算版本(正常版和提速版),支持二分类和多分类任务。模型在保持高预测精度的同时,通过特征贡献分析实现决策过程的可视化。代码采用MATLAB2020b及以上版本运行,包含详细中文注释,附带测试数据集,适合不同水平的用户使用。原创 2026-02-01 00:08:11 · 346 阅读 · 0 评论 -
Matlab【独家原创】基于BiTCN-LSTM-SHAP可解释性分析的分类预测
本文介绍了一种基于双向时间卷积网络(BiTCN)结合长短期记忆神经网络(LSTM)的数据分类预测模型,并集成SHAP可解释性分析。该模型支持多输入单输出分类任务,针对SHAP分析速度慢的问题提供了两种计算版本(正常版和提速版)。程序采用MATLAB编写(需2020b及以上版本),支持二分类和多分类任务,包含详细中文注释。运行结果可展示分类效果图、迭代优化图和混淆矩阵图。模型结合了机器学习的高精度预测与SHAP的可解释性分析优势,通过特征贡献度量化各输入对决策的影响,为模型优化提供依据。附带测试数据集,适合各原创 2026-01-29 00:03:54 · 304 阅读 · 0 评论 -
Matlab【独家原创】基于WMA-CNN-BiGRU+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-BiGRU混合模型,结合SHAP可解释性分析的分类预测方法。该模型通过WMA算法优化网络参数,提升预测性能,并采用SHAP方法提供局部和全局特征解释。程序包含正常版和提速版两种SHAP计算方案,支持MATLAB 2020b及以上版本运行,适用于二分类和多分类任务。代码附带测试数据集,提供分类效果图、优化迭代图和混淆矩阵等可视化结果。该混合建模框架实现了预测精度与模型可解释性的平衡,为复杂系统建模提供了有效解决方案。原创 2026-01-18 00:05:15 · 319 阅读 · 0 评论 -
Matlab【独家原创】基于WMA-CNN-GRU+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-GRU混合模型,结合SHAP可解释性分析的分类预测方法。该模型采用两种SHAP计算版本(正常版和提速版)以适应不同数据需求,通过博弈论中的Shapley值量化特征贡献,在保持高预测精度的同时提升模型可解释性。代码兼容二分类和多分类任务,提供完整的运行结果展示(包括分类效果图、优化迭代图和混淆矩阵),附带测试数据集和详细使用说明,适用于MATLAB 2020b及以上环境。原创 2026-01-18 00:04:23 · 248 阅读 · 0 评论 -
Matlab【独家原创】基于WMA-CNN-BiLSTM+SHAP可解释性分析的分类预测 (多输入单输出)
本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-BiLSTM混合神经网络模型,结合SHAP可解释性分析框架的多输入单输出分类预测方法。该模型通过WMA算法优化网络参数,提升预测性能,并采用SHAP方法对模型决策过程进行可视化解释。程序提供两种SHAP计算版本(常规版和提速版),附带详细使用说明和测试数据集,支持MATLAB 2020b及以上版本运行。模型可同时处理二分类和多分类任务,输出结果包含分类效果图、迭代优化曲线和混淆矩阵等可视化分析。该方案实现了预测精度与模型可解释性的统一,适用于需要决策原创 2026-01-18 00:03:35 · 404 阅读 · 0 评论 -
基于BKA-LSTM-LSSVM数据分类预测 Matlab代码
摘要:本文介绍了一种基于贝叶斯算法优化的LSTM-LSSVM混合模型(BO-Bayes-LSTM-LSSVM)数据分类预测Matlab代码。该代码通过贝叶斯优化自动调整LSTM的隐藏层节点数、学习率和正则化系数,支持二分类和多分类任务。程序已调试完成,用户只需替换Excel格式数据集即可直接运行。运行环境要求MATLAB 2020b及以上版本,代码包含详细中文注释。运行结果可视化内容包括分类效果图、迭代优化图和混淆矩阵图。该模型适用于各类数据分类预测任务,具有较好的实用性和易用性。原创 2026-01-13 23:32:30 · 269 阅读 · 0 评论 -
基于1D-CNN的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于1D-CNN的多变量回归预测MATLAB程序,可直接用于FO工艺数据分析。程序支持多输入单输出预测,输入特征包括膜面积、流速、浓度等参数。该代码已在2018b及以上MATLAB环境调试完成,提供R2、MAE等多项评价指标及可视化结果。程序包含详细中文注释和测试数据集,适合初学者直接使用,只需替换Excel格式数据即可运行。文末附有代码获取方式。原创 2026-01-07 23:36:57 · 297 阅读 · 0 评论 -
[原创]基于VMD-SE-LSTM+Transformer多变量时序预测 Matlab代码
摘要:本文介绍了一种基于变分模态分解(VMD)、样本熵(SE)和混合神经网络(LSTM+Transformer)的多变量时序预测方法。该方法通过VMD-SE对输出数据进行分解,将分量划分为高频和低频部分,分别采用LSTM和Transformer模型进行建模。程序采用北半球光伏功率数据测试,包含完整评价指标(R2、MAE等)和可视化结果。代码已调试完毕,附带中文注释和测试数据集,适合MATLAB 2023b及以上版本运行,可直接替换数据进行预测应用。原创 2026-01-07 23:30:04 · 861 阅读 · 0 评论 -
[独家原创]CPO-VMD-KPCA-CPO-LSTM单变量时序预测 (单输入单输出) matlab代码
本文介绍了一种基于CPO-VMD-KPCA-CPO-LSTM的单变量时序预测方法。该方法采用冠豪猪算法(CPO)优化变分模态分解(VMD)和长短期记忆网络(LSTM),结合核主成分分析(KPCA)进行降维处理。代码在Matlab2020b及以上环境运行,通过风速数据测试,提供RMSE、R2、MAPE等多项评价指标,并采用6+6模式实现结果可视化。该CPO算法为2024年新发表的中科院1区SCI成果,具有创新性。代码包含详细中文注释,附带测试数据集,适合新手直接使用。原创 2026-01-07 23:28:59 · 340 阅读 · 0 评论 -
基于IWOA-CNN-BiLSTM-Attention多变量时序预测 Matlab代码
摘要:本文介绍了一个基于IWOA-CNN-BiLSTM-Attention的多变量时序预测Matlab代码,包含三个改进点:准反向学习初始化种群、非线性收敛因子调节搜索能力、自适应权重+随机差分变异保持种群多样性。代码已调试完成,可直接替换Excel数据集运行,提供RMSE、R2等7种评价指标,适用于MATLAB2020b及以上版本。该代码注释清晰,附带测试数据集,适合科研使用,并支持算法优化定制服务。原创 2026-01-07 23:25:39 · 140 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-Transformer多变量时序预测
【摘要】本文提出一种基于CEEMDAN-CPO-VMD-Transformer的多变量时序预测方法,采用双重分解策略提升预测精度。首先通过CEEMDAN分解原始数据并计算样本熵进行聚类,再利用新型CPO算法优化VMD对高频分量二次分解,最后结合Transformer网络挖掘时序特征。方法在北半球光伏功率数据上验证有效,提供R2、MAE等多项评价指标,MATLAB代码含中文注释且可替换数据集直接运行。包含2024年最新CPO优化算法,适合科研应用。(149字)原创 2026-01-07 23:24:41 · 244 阅读 · 0 评论 -
[独家原创]VMD-KPCA-CCO-CNN-BiGRU-Attention多变量时序预测 (多输入单输出)matlab
摘要:本文介绍了一种基于VMD-KPCA-CCO-CNN-BiGRU-Attention的多变量时序预测模型。该模型采用变分模态分解和核主成分分析进行特征处理,结合杜鹃鲶鱼优化算法、卷积神经网络、双向门控循环单元和注意力机制进行预测。代码适用于Matlab2020b及以上版本,提供RMSE、R2、MAPE等多指标评估,包含详细中文注释和测试数据集。运行流程包括VMD分解、KPCA降维和主预测程序三部分。该模型特别适合风电场等多变量时序预测任务,操作简便,适合科研人员使用。原创 2025-12-29 23:11:43 · 156 阅读 · 0 评论 -
[独家原创]VMD-KPCA-CCO-CNN-GRU-Attention多变量时序预测 (多输入单输出) matlab
本文介绍了一种基于VMD-KPCA-CCO-CNN-GRU-Attention的多变量时序预测方法。该方法采用变分模态分解和核主成分分析对输入特征进行预处理,结合杜鹃鲶鱼算法优化参数,通过卷积神经网络和门控循环单元实现特征提取,并引入注意力机制提升预测性能。代码在Matlab2020b及以上环境运行,提供RMSE、R2、MAPE等多项评估指标对比,包含详细中文注释和测试数据集。该算法创新性地融合了多种先进技术,适用于风电场等多变量时序预测任务。原创 2025-12-29 23:10:38 · 129 阅读 · 0 评论 -
[独家原创]VMD-KPCA-CCO-CNN-BiLSTM-Attention多变量时序预测(多输入单输出)matlab
摘要:本文介绍了一种基于VMD-KPCA-CCO-CNN-BiLSTM-Attention的多变量时序预测方法,采用风电场数据进行建模。该方法通过变分模态分解和核主成分分析对输入特征进行预处理,结合杜鹃鲶鱼优化算法和深度学习模型进行预测。代码运行环境要求Matlab2020b及以上,提供RMSE、R2等多指标评估,包含完整中文注释和测试数据集。代码获取方式见文末,适合科研人员和初学者使用。原创 2025-12-29 23:09:02 · 295 阅读 · 0 评论 -
[独家原创]VMD-KPCA-CCO-CNN-LSTM-Attention多变量时序预测 (多输入单输出) matlab
摘要:本文介绍了一种基于VMD-KPCA-CCO-CNN-LSTM-Attention的多变量时序预测模型,适用于多输入单输出场景。该模型结合变分模态分解、核主成分分析、杜鹃鲶鱼算法、卷积神经网络、长短期记忆网络和注意力机制,采用风电场数据进行预测。代码运行环境要求MATLAB2020b及以上版本,提供RMSE、R2、MAPE等多项评价指标对比。实现步骤包括先运行VMD分解,再进行KPCA降维,最后运行主预测模型。该模型采用2025年提出的新型杜鹃鲶鱼优化算法,代码注释清晰,附带测试数据集,适合新手使用。原创 2025-12-29 23:06:54 · 239 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-BiGRU6模型单变量时序预测一键对比
摘要:本文介绍了一种基于Matlab的6模型单变量时序预测对比方案,采用CEEMDAN-CPO-VMD-PLO-Transformer-BiGRU双优化模型,包含一键对比功能。方案通过CEEMDAN分解和CPO-VMD二次分解处理高频分量,结合Transformer编码器和BiGRU进行预测。代码已调试完成,支持电力数据格式,提供R2、MAE等多项评价指标。运行环境要求MATLAB 2023b及以上版本,包含中文注释和测试数据集,适合初学者使用。原创 2025-12-29 23:02:21 · 262 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-GRU6模型单变量时序预测一键对比
本文提出一种基于CEEMDAN-CPO-VMD-PLO-Transformer-GRU六模型对比的单变量时序预测方法。该方法通过CEEMDAN分解和样本熵聚类,采用CPO优化VMD参数进行二次分解,结合Transformer编码器和GRU网络进行预测。代码包含VMD-Transformer-GRU等多个对比模型,一键运行即可获得R2、MAE等评价指标。程序已调试完成,支持直接替换Excel数据集使用,特别适合时序预测研究。运行环境要求MATLAB 2023b及以上版本,代码包含详细中文注释和测试数据。原创 2025-12-29 22:57:12 · 357 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-BiLSTM6模型单变量时序预测一键对比
本文介绍了一种基于Matlab的多模型单变量时序预测方法。该方法整合了CEEMDAN-CPO-VMD-PLO-Transformer-BiLSTM等6种模型,通过一键运行即可实现对比分析。系统采用CEEMDAN分解和样本熵聚类,利用CPO优化VMD参数,结合Transformer编码器挖掘时序特征,最后通过BiLSTM进行预测。该方案支持多输入单输出模式,提供R2、MAE等多项评价指标,附带完整测试数据集和详细中文注释,适合MATLAB 2023b及以上环境运行。代码已调试完成,用户只需替换数据即可使用,特原创 2025-12-29 22:56:00 · 351 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-LSTM6模型单变量时序预测一键对比
本文提出了一种基于CEEMDAN-CPO-VMD-PLO-Transformer-LSTM(双优化)的6模型单变量时序预测方法,可实现一键对比分析。该方法首先通过CEEMDAN分解和样本熵聚类,采用CPO优化VMD参数对高频分量二次分解,再将分解结果与Transformer-LSTM模型结合预测。代码包含VMD-Transformer-LSTM等6种模型对比,支持多输入单输出预测,评价指标完善。程序已调试完成,用户只需替换数据集即可运行,适合电力数据等单变量时序预测任务,预测精度较高。运行环境需MATLAB原创 2025-12-29 22:50:33 · 546 阅读 · 0 评论 -
(加交叉验证)基于1D-CNN的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于1D-CNN的多变量回归预测程序,适用于多输入单输出的数据分析。程序已调试完成,可直接替换Excel数据集运行,默认采用5折交叉验证。输入特征包括膜面积、流速等5个变量,输出预测结果。运行要求MATLAB 2018b及以上版本,提供R2、MAE等多项评价指标和可视化图表。代码注释清晰,附带测试数据集,适合初学者使用。文末提供代码获取方式。原创 2025-12-29 22:49:31 · 516 阅读 · 0 评论 -
基于CNN-DELM单变量时序预测 Matlab
摘要:本文介绍了一个基于CNN-DELM混合模型的单变量时序预测Matlab程序,采用12种可视化方式(6种误差分析+6种统计分布)展示结果。代码已调试完善,支持Excel格式电力数据,包含R2、MAE等评价指标,附带详细中文注释和测试数据集。适用于Matlab 2021b及以上环境,提供完整运行指南和结果展示,适合初学者直接使用。(99字)原创 2025-12-26 23:47:31 · 294 阅读 · 0 评论 -
基于CNN-DELM多变量时序预测 Matlab
基于CNN-DELM模型的时序预测Matlab代码 摘要:本文提供了一套基于卷积神经网络(CNN)和深度极限学习机(DELM)的多变量时序预测Matlab代码。该代码具有以下特点:1) 采用6+6可视化模式(6个误差分析图+6个统计分布图);2) 附带详细Word说明文档;3) 包含完整中文注释,适合新手使用;4) 提供测试数据集,用户只需替换数据即可运行;5) 要求Matlab 2021b及以上版本(可提供)。代码已调试完成,支持R2、MAE、MSE等多种评价指标,实现了"开箱即用"的原创 2025-12-26 23:46:49 · 149 阅读 · 0 评论 -
Matlab 基于(BiLSTM-GPR)双向长短期记忆神经网络结合高斯过程回归的多变量回归预测
摘要:本文介绍了一种基于BiLSTM-GPR(双向长短期记忆神经网络结合高斯过程回归)的多变量回归预测MATLAB程序。该程序支持多输入单输出,具有即用性(替换Excel数据集即可运行)、完善的评价指标(RMSE、R2等7项)和可视化功能。程序要求MATLAB 2018b及以上版本,提供中文注释和测试数据集,适合科研人员直接应用或作为算法优化基础。文中展示了运行效果并提供了获取方式。原创 2025-12-22 22:51:48 · 307 阅读 · 0 评论 -
Matlab【独家原创】基于DOA-CNN-BiGRU-Attention-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于豺算法优化的DOA-CNN-BiGRU-Attention混合模型,结合SHAP可解释性分析工具,实现多输入单输出的分类预测。该模型通过优化卷积神经网络和双向门控循环单元结构,并引入注意力机制提升性能。针对SHAP分析速度问题,提供了正常版和提速版两种计算方案。文章详细说明了模型的数学原理、代码实现(MATLAB 2020b+环境)和可视化效果,包括分类结果、优化过程和混淆矩阵等。该方案兼顾预测精度与可解释性,适用于二分类和多分类任务,附带测试数据集和详细使用说明。原创 2025-12-15 22:26:29 · 340 阅读 · 0 评论 -
Matlab【独家原创】基于DOA-CNN-GRU-Attention-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于豺算法(DOA)优化的CNN-GRU-Attention混合模型,结合SHAP可解释性分析的多输入单输出分类预测方法。该模型通过特征贡献分析实现决策过程可视化,并提供了两种SHAP计算版本(常规版和提速版)以适应不同数据需求。程序采用MATLAB2020b及以上版本开发,支持二分类和多分类任务,包含详细的运行结果展示(分类效果图、优化迭代图、混淆矩阵等)和中文注释。模型创新性地将最新发表的DOA优化算法与深度学习相结合,在保持预测精度的同时增强了模型可解释性,适用于各类复杂系统的建模原创 2025-12-15 22:25:05 · 327 阅读 · 0 评论 -
Matlab【独家原创】基于DOA-CNN-BiLSTM-Attention-SHAP可解释性分析的分类预测
本文介绍了一种基于豺算法优化的CNN-BiLSTM-Attention混合模型,结合SHAP可解释性分析的多输入单输出分类预测方法。该模型通过DOA算法优化网络参数,并附带两种SHAP计算版本(常规版和提速版)以适应不同数据需求。文章强调该方法在保持高预测精度的同时,利用SHAP分析提供直观的特征贡献解释,解决了复杂模型可解释性问题。代码采用MATLAB实现,兼容二分类和多分类任务,包含详细中文注释和测试数据集,适合机器学习初学者使用。运行结果可视化包括分类效果图、优化迭代曲线和混淆矩阵等。原创 2025-12-15 22:24:14 · 349 阅读 · 0 评论 -
Matlab【独家原创】基于DOA-CNN-LSTM-Attention-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于豺算法(DOA)优化的CNN-LSTM-Attention混合模型,结合SHAP可解释性分析的多输入单输出分类预测方法。该模型通过优化算法提升性能,并附有正常版和提速版两种SHAP计算文件。文章详细说明了模型特点:MATLAB2020b以上环境运行、支持二分类/多分类、中文注释清晰,并提供测试数据集。同时展示了分类效果图、迭代优化图和混淆矩阵图等运行结果。该混合建模框架实现了预测精度与解释能力的统一,为复杂系统建模提供了新思路。原创 2025-12-15 22:22:04 · 274 阅读 · 0 评论 -
Matlab【独家原创】基于IVY-CNN-BiLSTM-Attention-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于常青藤算法(IVY)优化的CNN-BiLSTM-Attention混合模型,结合SHAP可解释性分析的分类预测方法。该模型采用两种SHAP计算版本(正常版和提速版)以提高分析效率,适用于多输入单输出的分类任务。文章详细说明了代码的使用方法,包括数据格式要求(MATLAB 2020b及以上环境)、运行结果展示(包含分类效果图、优化迭代图等)以及获取方式。该创新方法将机器学习的高精度预测与SHAP的可解释性分析相结合,为模型决策过程提供了直观解释,特别适合需要模型可解释性的应用场景。原创 2025-12-15 22:20:31 · 271 阅读 · 0 评论 -
Matlab【独家原创】基于IVY-CNN-LSTM-Attention-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于IVY优化算法改进的CNN-LSTM-Attention混合模型,结合SHAP可解释性分析工具,实现多输入单输出的分类预测。针对SHAP分析速度慢的问题,提供了正常版和提速版两种计算方案。该模型在保持高预测精度的同时,通过SHAP分析实现决策过程可视化,兼具性能与可解释性优势。代码采用MATLAB编写(需2020b以上版本),附带测试数据集,支持二分类和多分类任务,包含分类效果图、优化曲线和混淆矩阵等可视化结果。该成果基于2024年发表的SCI一区论文,具有较强创新性和实用性。原创 2025-12-15 22:19:39 · 232 阅读 · 0 评论 -
Matlab【独家原创】基于CPO-CNN-BiGRU-Attention-SHAP可解释性分析的分类预测
本文介绍了一种基于冠豪猪算法(CPO)优化的CNN-BiGRU-Attention混合模型,结合SHAP可解释性分析的多输入单输出分类预测方法。该模型采用2024年新提出的CPO算法进行优化,在保持高预测精度的同时,通过SHAP分析提供决策解释。程序包含两种SHAP计算版本(常规和提速),支持二分类和多分类任务,适用于MATLAB2020b及以上环境。代码注释清晰,附带测试数据集,可直接运行并输出分类效果图、迭代优化图和混淆矩阵图等可视化结果。该方案将深度学习与可解释性分析相结合,为复杂系统建模提供了新思路原创 2025-12-15 22:16:58 · 585 阅读 · 0 评论 -
【原创】基于[并行]Bayes-Transformer-BiGRU单变量时序预测 Matlab
摘要:本文介绍了一个基于贝叶斯算法优化Transformer结合BiGRU的多变量时序预测Matlab代码。该代码采用6+6可视化模式展示模型结果,包含基础误差分析和统计分布分析图像,并附有详细解释。程序已调试完善,可直接替换Excel数据集运行,适用于光伏、负荷等预测任务。优化参数包括隐藏层节点数、正则化系数和学习率。要求MATLAB 2023b及以上版本,提供测试数据集和中文注释,适合新手使用。评价指标涵盖R2、MAE、MSE等多项指标。原创 2025-12-11 22:56:52 · 277 阅读 · 0 评论 -
【原创】基于[并行]Bayes-Transformer-GRU单变量时序预测 Matlab
本文介绍了一个基于贝叶斯算法优化Transformer-GRU模型的单变量时序预测Matlab代码。该程序采用6+6模式实现模型结果可视化(6个基础误差分析图+6个统计分布图),并附赠word解释文档。代码优化了隐藏层节点数、正则化系数等超参数,可直接运行excel格式数据集,无需修改。程序适用于2023b及以上MATLAB版本,提供R2、MAE等多指标评估,中文注释清晰,附带测试数据集,特别适合新手使用。原创 2025-12-11 22:55:39 · 297 阅读 · 0 评论 -
【原创】基于[并行]Bayes-Transformer-LSTM单变量时序预测 Matlab
本文介绍了一种基于贝叶斯算法优化Transformer-LSTM的时序预测方法。该Matlab代码实现了单变量时序预测,采用6+6可视化模式展示模型结果,包含基础误差分析和统计分布图像。代码可直接运行,适用于光伏、负荷等时序数据预测,评价指标包括R2、MAE等。优化参数为隐藏层节点数、正则化系数和学习率,无需修改代码即可替换数据集使用。运行环境要求MATLAB 2023b及以上版本,附带测试数据和详细中文注释,适合新手使用。原创 2025-12-11 22:53:50 · 278 阅读 · 0 评论
分享