多目标算法优化
文章平均质量分 64
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matlab 基于NRBO-BP+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于牛顿拉夫逊算法优化的BP神经网络(NRBO-BP)结合NSGAII多目标优化算法的方法,适用于工艺参数优化等领域。该方法先通过NRBO-BP构建变量间的代理模型,再用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化),最终输出Pareto解集。代码包含两个主程序,需先运行回归模型再执行优化算法,并提供详细的运行结果可视化。该方案采用MATLAB 2018b以上环境,包含完整中文注释和测试数据集,适合初学者使用。研究成果已发表于中科院2区TOP期刊。原创 2025-06-11 23:24:01 · 394 阅读 · 0 评论 -
Matlab 基于Transformer+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于Transformer和NSGAII的多目标优化算法,适用于工艺参数优化等领域。该算法首先通过Transformer建立自变量与因变量的代理模型,再使用NSGAII算法求解多目标优化问题(一个目标最大化,两个目标最小化)。代码包含两个主程序:Transformer回归建模和NSGAII优化。该方法利用Transformer挖掘复杂特征关系,提高预测精度,并提供R2、MAE等多种评价指标。代码附带测试数据集,中文注释清晰,需MATLAB 2023b及以上版本运行。原创 2025-06-11 23:23:02 · 472 阅读 · 0 评论 -
Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【三目标】
本文介绍了一个基于Transformer-GRU和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码包含两个主程序:先用Transformer-GRU构建多输出回归模型,再用NSGAII进行三目标优化(y1最大化,y2、y3最小化)。该模型处理5输入3输出数据,提供包括R2、MAE等多项评估指标和可视化结果。代码要求MATLAB 2023b环境,带有详细中文注释和测试数据集,适合新手使用。运行流程清晰,先训练代理模型,再进行多目标优化获取Pareto解集。原创 2025-06-11 23:22:03 · 318 阅读 · 0 评论 -
Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于Transformer-BiLSTM与NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案通过Transformer-BiLSTM建立多输出回归模型,再使用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化)。代码包含两个主程序,先训练代理模型再进行优化,提供完整的预测评估指标(R2、MAE等)和可视化结果。该方案支持5输入3输出数据处理,并附赠测试数据集,MATLAB2023b环境下可直接运行,代码注释清晰,适合初学者使用。原创 2025-06-11 23:21:00 · 268 阅读 · 0 评论 -
Matlab 基于Transformer-LSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该代码实现了一种基于Transformer-LSTM与NSGAII的多目标优化算法,适用于工艺参数优化等领域。通过Transformer-LSTM构建多变量代理模型后,利用NSGAII寻找三目标的极值组合(y1最大化,y2、y3最小化),并生成对应的自变量Pareto解集。代码包含两个主程序(模型训练和优化求解),提供完整测试数据集,输出包括多种评估指标和可视化图表(拟合图、误差分析等)。运行环境要求MATLAB 2023b及以上版本,代码有详细中文注释,适合科研应用。(149字)原创 2025-06-11 23:19:36 · 336 阅读 · 0 评论 -
Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个结合Transformer-GRU和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案首先通过Transformer-GRU建立多变量代理模型,然后利用NSGAII寻找最优解集。代码包含两个主程序,分别用于回归建模和多目标优化,配套测试数据集和详细中文注释,支持MATLAB 2023b及以上版本运行。方案提供了完整的评价指标(R2、MAE等)和可视化结果,包括预测拟合图、误差分析图等,适合初学者直接应用于实际数据。原创 2025-06-11 23:18:40 · 391 阅读 · 0 评论 -
Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种基于Transformer-BiLSTM和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码通过Transformer-BiLSTM构建代理模型,结合NSGAII算法寻找最优解集,包含5个输入特征和4个输出目标。运行流程分为两个主程序,提供完整的评价指标和可视化结果。代码要求MATLAB 2023b环境,附带测试数据集和中文注释,适合初学者使用。原创 2025-06-11 23:17:33 · 470 阅读 · 0 评论 -
Matlab 基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法的工艺参数优化
基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经NRBO-BP封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集原创 2025-06-09 23:13:00 · 294 阅读 · 0 评论 -
Matlab 基于粒子群算法优化BP神经网络PSO-BP+NSGAII多目标优化算法的工艺参数优化
摘要: 本文介绍一种基于PSO-BP神经网络和NSGAII的多目标优化算法代码。该算法首先通过PSO-BP构建输入(x1-x5)与输出(y1-y4)的代理模型,再使用NSGAII寻找y1极大值及y2-y4极小值对应的Pareto解集。代码包含两个主程序:先运行PSO-BP回归,再进行NSGAII优化。运行环境需MATLAB 2018b+,提供完整测试数据集和详细中文注释,输出包括回归拟合图、误差分析图等可视化结果,评价指标全面(R2、MAE等)。代码适用于工艺参数优化等领域,适合初学者使用。原创 2025-06-09 23:11:43 · 455 阅读 · 0 评论 -
Matlab 基于PSO-LSSVM+NSGAII多目标优化算法的工艺参数优化
基于粒子群算法优化最小二乘向量机(PSO-LSSVM)的NSGAII多目标优化算法,可适用于工艺参数优化等方向。代码简介:1、先经PSO-LSSVM封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过nsgaII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。原创 2025-02-27 00:20:34 · 1298 阅读 · 0 评论
分享